Results 21 to 30 of about 160 (133)
The dynamics of criminal collaboration: Multiplex ties in mafia networks
Abstract This study examines how social embeddedness and multiplex relationships shape criminal collaboration within organized crime networks. Drawing on data from three major investigations into the ‘Ndrangheta, we analyze how kinship, clan affiliation, leadership, and prior interactions influence participation in meetings and phone calls.
Francesco Calderoni +2 more
wiley +1 more source
A Vulnerability Lens for Intuitive‐Logic Scenarios
ABSTRACT Exploration of possibilities by means of intuitive logic is hampered by a large number of scenarios, which easily exceed the limits imposed by human bounded rationality. While many practitioners constrain their scenarios within a 2 × 2 $2\times 2$ matrix by design, more structured approaches point to rationales such as eliminating ...
Guido Fioretti
wiley +1 more source
This work tackles the unresolved stability problem of heterogeneous quaternion‐valued BAM neural networks plagued by unknown parameters, time‐varying delays, and impulses. By synergizing Lyapunov theory with inequality techniques, we establish rigorous, yet practical, global stability conditions.
Xi Long, Yaqin Li
wiley +1 more source
Steiner Triple Systems With High Discrepancy
ABSTRACT In this paper, we initiate the study of discrepancy questions for combinatorial designs. Specifically, we show that, for every fixed r ≥ 3 and n ≡ 1 , 3 ( mod 6 ), any r‐colouring of the triples on [ n ] admits a Steiner triple system of order n with discrepancy Ω ( n 2 ).
Lior Gishboliner +2 more
wiley +1 more source
Quantum‐Enhanced Simulated Annealing Using Rydberg Atoms
This study experimentally demonstrates that a Rydberg hybrid quantum‐classical algorithm, termed as quantum‐enhanced simulated annealing (QESA), provides a computational time advantage over a classical standalone simulated annealing (SA). This scatter plot represents the comparison of QESA versus SA for the 924 graphs with the sizes N=60$N=60$, 80 and ...
Seokho Jeong, Juyoung Park, Jaewook Ahn
wiley +1 more source
ABSTRACT An inversion of a tournament T is obtained by reversing the direction of all edges with both endpoints in some set of vertices. Let inv k ( T ) be the minimum length of a sequence of inversions using sets of size at most k that result in the transitive tournament.
Raphael Yuster
wiley +1 more source
Graph Set-colorings And Hypergraphs In Topological Coding [PDF]
Bing Yao, Fei Ma
openalex +1 more source
A Sharper Ramsey Theorem for Constrained Drawings
ABSTRACT Given a graph G and a collection C of subsets of R d indexed by the subsets of vertices of G, a constrained drawing of G is a drawing where each edge is drawn inside some set from C, in such a way that nonadjacent edges are drawn in sets with disjoint indices. In this paper we prove a Ramsey‐type result for such drawings.
Pavel Paták
wiley +1 more source
Sequentially Constrained Hamilton Cycles in Random Graphs
ABSTRACT We discuss the existence of Hamilton cycles in the random graph Gn,p$$ {G}_{n,p} $$ where there are restrictions caused by (i) coloring sequences, (ii) a subset of vertices must occur in a specific order, and (iii) there is a bound on the number of inversions in the associated permutation.
Alan Frieze, Wesley Pegden
wiley +1 more source
Canonical colourings in random graphs
Abstract Rödl and Ruciński (J. Amer. Math. Soc. 8 (1995), 917–942) established Ramsey's theorem for random graphs. In particular, for fixed integers r$r$, ℓ⩾2$\ell \geqslant 2$ they proved that p̂Kℓ,r(n)=n−2ℓ+1$\hat{p}_{K_\ell,r}(n)=n^{-\frac{2}{\ell +1}}$ is a threshold for the Ramsey property that every r$r$‐colouring of the edges of the binomial ...
Nina Kamčev, Mathias Schacht
wiley +1 more source

