Results 51 to 60 of about 28,962 (144)
A combinatorial non-commutative Hopf algebra of graphs [PDF]
Combinatorics A non-commutative, planar, Hopf algebra of planar rooted trees was defined independently by one of the authors in Foissy (2002) and by R. Holtkamp in Holtkamp (2003). In this paper we propose such a non-commutative Hopf algebra for graphs. In order to define a non-commutative product we use a quantum field theoretical (QFT) idea,
Duchamp, Gerard +4 more
openaire +5 more sources
Nonlocal, noncommutative diagrammatics and the linked cluster Theorems [PDF]
Recent developments in quantum chemistry, perturbative quantum field theory, statistical physics or stochastic differential equations require the introduction of new families of Feynman-type diagrams. These new families arise in various ways.
Brouder, Christian, Frédéric, Patras
core +3 more sources
Multivariate representations of univariate marked Hawkes processes
Abstract Univariate marked Hawkes processes are used to model a range of real‐world phenomena including earthquake aftershock sequences, contagious disease spread, content diffusion on social media platforms, and order book dynamics. This paper illustrates a fundamental connection between univariate marked Hawkes processes and multivariate Hawkes ...
Louis Davis +3 more
wiley +1 more source
ABSTRACT Unarguably, malware and their variants have metamorphosed into objects of attack and cyber warfare. These issues have directed research focus to modeling infrastructural settings and infection scenarios, analyzing propagation mechanisms, and conducting studies that highlight optimized remedial measures.
Chukwunonso Henry Nwokoye
wiley +1 more source
Large‐Amplitude Periodic Solutions to the Steady Euler Equations With Piecewise Constant Vorticity
ABSTRACT We consider steady solutions to the incompressible Euler equations in a two‐dimensional channel with rigid walls. The flow consists of two periodic layers of constant vorticity separated by an unknown interface. Using global bifurcation theory, we rigorously construct curves of solutions that terminate either with stagnation on the interface ...
Alex Doak +3 more
wiley +1 more source
Hopf Algebras of m-permutations, (m+1)-ary trees, and m-parking functions
The m-Tamari lattice of F. Bergeron is an analogue of the clasical Tamari order defined on objects counted by Fuss-Catalan numbers, such as m-Dyck paths or (m+1)-ary trees.
Novelli, J. -C., Thibon, J. -Y.
core +3 more sources
Siegel–Veech constants for cyclic covers of generic translation surfaces
Abstract We compute the asymptotic number of cylinders, weighted by their area to any nonnegative power, on any cyclic branched cover of any generic translation surface in any stratum. Our formulae depend only on topological invariants of the cover and number‐theoretic properties of the degree: in particular, the ratio of the related Siegel–Veech ...
David Aulicino +4 more
wiley +1 more source
Renormalization Hopf algebras and combinatorial groups [PDF]
These are the notes of five lectures given at the Summer School {\em Geometric and Topological Methods for Quantum Field Theory}, held in Villa de Leyva (Colombia), July 2--20, 2007. The lectures are meant for graduate or almost graduate students in physics or mathematics. They include references, many examples and some exercices.
openaire +2 more sources
Combinatorial Hopf algebra of superclass functions of type D [PDF]
Last section modified.
openaire +2 more sources
The hybrid approach to Quantum Supervised Machine Learning is compatible with Noisy Intermediate Scale Quantum (NISQ) devices but hardly useful. Pure quantum kernels requiring fault‐tolerant quantum computers are more promising. Examples are kernels computed by means of the Quantum Fourier Transform (QFT) and kernels defined via the calculation of ...
Massimiliano Incudini +2 more
wiley +1 more source

