Results 111 to 120 of about 86,776 (267)
Putatively Optimal Projective Spherical Designs With Little Apparent Symmetry
ABSTRACT We give some new explicit examples of putatively optimal projective spherical designs, that is, ones for which there is numerical evidence that they are of minimal size. These form continuous families, and so have little apparent symmetry in general, which requires the introduction of new techniques for their construction.
Alex Elzenaar, Shayne Waldron
wiley +1 more source
Invariants of finite groups and their applications to combinatorics [PDF]
Richard P. Stanley
openalex +1 more source
Positive Co‐Degree Turán Number for C5 and C5−
ABSTRACT The minimum positive co‐degree δ r − 1 + ( H )
Zhuo Wu
wiley +1 more source
The Moran Process on a Random Graph
ABSTRACT We study the fixation probability for two versions of the Moran process on the random graph Gn,p$$ {G}_{n,p} $$ at the threshold for connectivity. The Moran process models the spread of a mutant population in a network. Throughout the process, there are vertices of two types, mutants, and non‐mutants.
Alan Frieze, Wesley Pegden
wiley +1 more source
Rainbow Connection Number of Dense Graphs
An edge-colored graph G is rainbow connected, if any two vertices are connected by a path whose edges have distinct colors. The rainbow connection number of a connected graph G, denoted rc(G), is the smallest number of colors that are needed in order to ...
Li Xueliang+2 more
doaj +1 more source
Recent developments in algebraic combinatorics [PDF]
A survey of three recent developments in algebraic combinatorics: (1) the Laurent phenomenon, (2) Gromov-Witten invariants and toric Schur functions, and (3) toric h-vectors and intersection cohomology. This paper is a continuation of "Recent progress in algebraic combinatorics" (math.CO/0010218), which dealt with three other topics.
arxiv
Combinatorics of Free Cumulants
26 pages ...
Bernadette Krawczyk, Roland Speicher
openaire +3 more sources
On Rainbow Turán Densities of Trees
ABSTRACT For a given collection 𝒢=(G1,…,Gk) of graphs on a common vertex set V$$ V $$, which we call a graph system, a graph H$$ H $$ on a vertex set V(H)⊆V$$ V(H)\subseteq V $$ is called a rainbow subgraph of 𝒢 if there exists an injective function ψ:E(H)→[k]$$ \psi :E(H)\to \left[k\right] $$ such that e∈Gψ(e)$$ e\in {G}_{\psi (e)} $$ for each e∈E(H)$$
Seonghyuk Im+3 more
wiley +1 more source
The rainbow connection was first introduced by Chartrand in 2006 and then in 2009 Krivelevich and Yuster first time introduced the rainbow vertex connection. Let graph be a connected graph.
Muhammad Ilham Nurfaizi Annadhifi+3 more
doaj +1 more source
Combinatorics and geometry of Littlewood-Richardson cones [PDF]
We present several direct bijections between different combinatorial interpretations of the Littlewood-Richardson coefficients. The bijections are defined by explicit linear maps which have other applications.
arxiv