Results 71 to 80 of about 12,930 (215)
Thinning to Improve Two‐Sample Discrepancy
ABSTRACT The discrepancy between two independent samples X1,…,Xn$$ {X}_1,\dots, {X}_n $$ and Y1,…,Yn$$ {Y}_1,\dots, {Y}_n $$ drawn from the same distribution on ℝd$$ {\mathbb{R}}^d $$ typically has order O(n)$$ O\left(\sqrt{n}\right) $$ even in one dimension.
Gleb Smirnov, Roman Vershynin
wiley +1 more source
Guido Castelnuovo and his heritage: geometry, combinatorics, teaching [PDF]
Claudio Fontanari
openalex +1 more source
Dimer models and conformal structures
Abstract Dimer models have been the focus of intense research efforts over the last years. Our paper grew out of an effort to develop new methods to study minimizers or the asymptotic height functions of general dimer models and the geometry of their frozen boundaries.
Kari Astala +3 more
wiley +1 more source
Graphs with 4-Rainbow Index 3 and n − 1
Let G be a nontrivial connected graph with an edge-coloring c : E(G) → {1, 2, . . . , q}, q ∈ ℕ, where adjacent edges may be colored the same. A tree T in G is called a rainbow tree if no two edges of T receive the same color. For a vertex set S ⊆ V (G),
Li Xueliang +3 more
doaj +1 more source
On the Q‐Polynomial Property of Bipartite Graphs Admitting a Uniform Structure
ABSTRACT Let Γ denote a finite, connected graph with vertex set X. Fix x ∈ X and let ε ≥ 3 denote the eccentricity of x. For mutually distinct scalars { θ i * } i = 0 ε define a diagonal matrix A * = A * ( θ 0 * , θ 1 * , … , θ ε * ) ∈ Mat X ( R ) as follows: for y ∈ X we let ( A * ) y y = θ ∂ ( x , y ) *, where ∂ denotes the shortest path length ...
Blas Fernández +3 more
wiley +1 more source
Bidiagonal Decompositions and Accurate Computations for the Ballot Table and the Fibonacci Matrix
ABSTRACT Riordan arrays include many important examples of matrices. Here we consider the ballot table and the Fibonacci matrix. For finite truncations of these Riordan arrays, we obtain bidiagonal decompositions. Using them, algorithms to solve key linear algebra problems for ballot tables and Fibonacci matrices with high relative accuracy are derived.
Jorge Ballarín +2 more
wiley +1 more source
Tensor diagrams and cluster combinatorics at punctures [PDF]
Chris Fraser, Pavlo Pylyavskyy
openalex +1 more source
A complex network perspective on brain disease
ABSTRACT If brain anatomy and dynamics have a complex network structure as it has become standard to posit, it is reasonable to assume that such a structure should play a key role not only in brain function but also in brain dysfunction. However, exactly how network structure is implicated in brain damage and whether at least some pathologies can be ...
David Papo, Javier M. Buldú
wiley +1 more source
A focal boundary value problem for difference equations
The eigenvalue problem in difference equations, (−1)n−kΔny(t)=λ∑i=0k−1pi(t)Δiy(t), with Δty(0)=0, 0≤i≤k, Δk+iy(T+1)=0, 0 ...
Cathryn Denny, Darrel Hankerson
doaj +1 more source
Rigidity of anti‐de Sitter (2+1)‐spacetimes with convex boundary near the Fuchsian locus
Abstract We prove that globally hyperbolic compact anti‐de Sitter (2+1)‐spacetimes with a strictly convex spacelike boundary that is either smooth or polyhedral and whose holonomy is close to Fuchsian are determined by the induced metric on the boundary.
Roman Prosanov, Jean‐Marc Schlenker
wiley +1 more source

