Results 211 to 220 of about 1,236,598 (336)

Multifunctional Phosphate Monomer Enabling LiNO3 Solvation and In Situ Formation of Flame‐Retardant Gel Polymer Electrolyte for High‐Voltage Lithium Metal Batteries

open access: yesAdvanced Science, EarlyView.
A phosphorus‐containing multifunctional monomer is successfully synthesized to simultaneously enable the dissolution of lithium nitrate in ester‐based electrolytes and in situ form a flame‐retardant gel polymer electrolyte (GPE). The formed GPE effectively stabilizes the structures of both the cathode and anode, thereby achieving superior long‐term ...
Lijun Ma   +5 more
wiley   +1 more source

Empowering Carbon Fibers With Ti3C2Tx MXene: A Paradigm Shift Toward Integrated Structure‐Function Composites

open access: yesAdvanced Science, EarlyView.
This review comprehensively outlines how Ti3C2Tx MXene transforms carbon fiber from a structural component into a multifunctional platform. We systematically detail cutting‐edge modification strategies and showcase exceptional performance in EMI shielding, energy storage, smart sensing, and beyond.
Hongshuo Cao   +6 more
wiley   +1 more source

Dual Effect of Steric Hindrance in Non‐Aqueous Amine Absorbents: Navigating the Trade‐Off Between Kinetics and Thermodynamics for Efficient CO2 Capture

open access: yesAdvanced Science, EarlyView.
This study elucidates how steric hindrance in amines creates a dual effect in CO2 capture: it thermodynamically favors the reaction by shifting the pathway from carbamate to alkyl carbonate formation, increasing capacity and lowering regeneration heat, while simultaneously slightly slowing the kinetics.
Xiaoyi Gao   +8 more
wiley   +1 more source

Novel Phosphazenium Tetrafluoroborate Dopant Enables Efficient and Thermally Stable n‐Doped Organic Semiconductors

open access: yesAdvanced Electronic Materials, EarlyView.
A novel n‐dopant, phosphazenium tetrafluoroborate (P2BF4), is introduced for efficient n‐doping in N2200, P(PzDPP‐CT2) and other organic semiconductors (OSCs). P2BF4‐doped OSC films exhibit exceptional thermal stability, maintaining electrical conductivity after heating at > 150 °C for 24 h. This stability allows organic thermoelectric devices based on
Huan Wei   +11 more
wiley   +1 more source

Thermoelectric Properties of a Family of Benzodifuranone‐Based Conjugated Copolymers in Oriented Thin Films Doped Sequentially With NDMBI‐H

open access: yesAdvanced Electronic Materials, EarlyView.
Combining high polymer orientation of n‐type copolymers by temperature rubbing and sequential doping with N‐DMBI results in a strong improvement of electrical conductivity and thermoelectric power factors reaching up to 9.8 ± 1.6 S cm−1 and 8 ± 3 µW m−1.K2, respectively.
Shubhradip Guchait   +7 more
wiley   +1 more source

Metal–Insulator–Insulator–Metal (MIIM) Ag/SnO2/Al2O3/Ag Diodes Fabricated by Ultraprecise Dispensing and Atomic Layer Deposition

open access: yesAdvanced Electronic Materials, EarlyView.
This study introduces a new method for fabricating MIIM diodes using ultra‐precise dispensing printing techniques combined with ALD. Thus, it provides a practical alternative to traditional lithography. The fabricated diode, with a contact area of 5.4 µm × 4.0 µm exhibits a tunneling current in the microampere range, a zero‐bias responsivity of −1.31 A/
Aboubacar Savadogo   +8 more
wiley   +1 more source

Aqueous Zinc‐Based Batteries: Active Materials, Device Design, and Future Perspectives

open access: yesAdvanced Energy Materials, EarlyView.
This review conducts a comprehensive analysis of aqueous zinc‐based batteries (AZBs) based on their intrinsic mechanisms, including redox reactions, ion intercalation reactions, alloying reactions, electrochemical double‐layer reactions, and mixed mechanisms, systematically discussing recent advancements in each type of AZBs.
Yan Ran, Fang Dong, Shuhui Sun, Yong Lei
wiley   +1 more source

Safety of Sodium‐Ion Batteries: Evaluation and Perspective from Component Materials to Cells, Modules, and Packs

open access: yesAdvanced Energy Materials, EarlyView.
This review provides a bottom‐up evaluation of sodium‐ion battery safety, linking material degradation mechanisms, cell engineering parameters, and module/pack assembly. It emphasizes that understanding intrinsic material stability and establishing coordinated engineering control across hierarchical levels are vital for preventing degradation coupling ...
Won‐Gwang Lim   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy