Results 291 to 300 of about 489,889 (380)

Ultra‐Flexible Dual‐Band Organic Photodetectors for Visible and Near‐Infrared Sensing

open access: yesAdvanced Optical Materials, EarlyView.
An ultra‐flexible dual‐band organic photodetector with a total thickness of 5.6 µm for bio‐sensing is developed. It selectively detects visible and near‐infrared light with high sensitivity by switching the voltage. Peripheral oxygen saturation (SpO2) measurement is demonstrated using the device attached to a finger under a single light source by ...
Sachi Awakura   +6 more
wiley   +1 more source

Effect of Host Anisotropy on Phosphorescent Emitter Orientation and Light Outcoupling in OLEDs

open access: yesAdvanced Optical Materials, EarlyView.
The orientation of the emissive transition dipole moment of a cage‐type Iridium complex can be tuned by the anisotropic alignment of the cohost material, which is expressed as the S$S$ parameter of the film. Thus, the external quantum efficiency of OLEDs can be further enhanced to reach values above 30%.
Bình‐Minh Nguyễn   +5 more
wiley   +1 more source

Conceptualising the experience of having TB: a global qualitative study. [PDF]

open access: yesIJTLD Open
Oberdhan D   +6 more
europepmc   +1 more source

Engineering of Double Absorber Organic‐Perovskite Solar Cells for >34% Efficiency with V2O5 as Back Surface Field Layer

open access: yesAdvanced Photonics Research, EarlyView.
This study investigates high‐efficiency double perovskite active layer (DPAL) structures using MAPbI3 and MASnI3 to surpass the Shockley‐Queisser limit in single‐junction perovskite solar cells. SCAPS‐1D simulations show that the V2O5‐assisted DPAL device achieves 34.14% power conversion efficiency with improved JSC, VOC, and FF.
Afifa Lubaba   +7 more
wiley   +1 more source

Flexible Sensor‐Based Human–Machine Interfaces with AI Integration for Medical Robotics

open access: yesAdvanced Robotics Research, EarlyView.
This review explores how flexible sensing technology and artificial intelligence (AI) significantly enhance human–machine interfaces in medical robotics. It highlights key sensing mechanisms, AI‐driven advancements, and applications in prosthetics, exoskeletons, and surgical robotics.
Yuxiao Wang   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy