Results 151 to 160 of about 91,509 (288)
Matrices over commutative rings as sums of $k$-th powers [PDF]
S. A. Katre, Anuradha S. Garge
openalex +1 more source
Coxeter's enumeration of Coxeter groups
Abstract In a short paper that appeared in the Journal of the London Mathematical Society in 1934, H. S. M. Coxeter completed the classification of finite Coxeter groups. In this survey, we describe what Coxeter did in this paper and examine an assortment of topics that illustrate the broad and enduring influence of Coxeter's paper on developments in ...
Bernhard Mühlherr, Richard M. Weiss
wiley +1 more source
Reflexivity and rigidity for complexes, I: Commutative rings [PDF]
Luchézar L. Avramov +2 more
openalex +1 more source
Theta divisors and permutohedra
Abstract We establish an intriguing relation of the smooth theta divisor Θn$\Theta ^n$ with permutohedron Πn$\Pi ^n$ and the corresponding toric variety XΠn$X_\Pi ^n$. In particular, we show that the generalised Todd genus of the theta divisor Θn$\Theta ^n$ coincides with h$h$‐polynomial of permutohedron Πn$\Pi ^n$ and thus is different from the same ...
V. M. Buchstaber, A. P. Veselov
wiley +1 more source
Uniformly Secondary Modules over Commutative Ring
In [2] the notion of “uniformly ideal” was introduced and developed the basic theory. In this article we introduce and advance a theory which, in a sense, dual to that i.e, the notion of “uniformly secondary module”.
A.J Taherizadeh
doaj
Minimal approximations for cotorsion pairs generated by modules of projective dimension at most one over commutative rings [PDF]
Giovanna Le Gros
openalex
Random planar trees and the Jacobian conjecture
Abstract We develop a probabilistic approach to the celebrated Jacobian conjecture, which states that any Keller map (i.e. any polynomial mapping F:Cn→Cn$F\colon \mathbb {C}^n \rightarrow \mathbb {C}^n$ whose Jacobian determinant is a non‐zero constant) has a compositional inverse which is also a polynomial. The Jacobian conjecture may be formulated in
Elia Bisi +5 more
wiley +1 more source
For nonzero coprime integers a and b, a positive integer l is said to be good with respect to a and b if there exists a positive integer k such that l divides ak + bk. Since the early 1990s, the notion of good integers has attracted considerable attention from researchers. This continued interest stems from both their elegant number‐theoretic structure
Somphong Jitman, Anwar Saleh Alwardi
wiley +1 more source
Some Properties of Hyper Ideals in Hyper Hoop‐Algebras
In this paper, we investigate the structural properties of hyper ideals in hyper hoop‐algebras, a generalization of hoop‐algebras under the framework of hyperstructures. Building upon foundational concepts in hyper group theory and hoop theory, the study introduces definitions for hyper ideals and weak hyper ideals, as well as their absorptive and ...
Teferi Getachew Alemayehu +5 more
wiley +1 more source
Prime factor rings of skew polynomial rings over a commutative Dedekind domain [PDF]
Y. Wang +2 more
openalex +1 more source

