Results 201 to 210 of about 27,367 (272)

A theorem concerning Fourier transforms: A survey

open access: yesJournal of the London Mathematical Society, Volume 113, Issue 1, January 2026.
Abstract In this note, we highlight the impact of the paper G. H. Hardy, A theorem concerning Fourier transforms, J. Lond. Math. Soc. (1) 8 (1933), 227–231 in the community of harmonic analysis in the last 90 years, reviewing, on one hand, the direct generalizations of the main results and, on the other hand, the different connections to related areas ...
Aingeru Fernández‐Bertolin, Luis Vega
wiley   +1 more source

The first two group theory papers of Philip Hall

open access: yesJournal of the London Mathematical Society, Volume 113, Issue 1, January 2026.
Abstract In this paper, we discuss the first two papers on soluble groups written by Philip Hall and their influence on the study of finite groups. The papers appeared in 1928 and 1937 in the Journal of the London Mathematical Society.
Inna Capdeboscq
wiley   +1 more source

Theta divisors and permutohedra

open access: yesJournal of the London Mathematical Society, Volume 113, Issue 1, January 2026.
Abstract We establish an intriguing relation of the smooth theta divisor Θn$\Theta ^n$ with permutohedron Πn$\Pi ^n$ and the corresponding toric variety XΠn$X_\Pi ^n$. In particular, we show that the generalised Todd genus of the theta divisor Θn$\Theta ^n$ coincides with h$h$‐polynomial of permutohedron Πn$\Pi ^n$ and thus is different from the same ...
V. M. Buchstaber, A. P. Veselov
wiley   +1 more source

Combination theorems for Wise's power alternative

open access: yesJournal of the London Mathematical Society, Volume 113, Issue 1, January 2026.
Abstract We show that Wise's power alternative is stable under certain group constructions, use this to prove the power alternative for new classes of groups and recover known results from a unified perspective. For groups acting on trees, we introduce a dynamical condition that allows us to deduce the power alternative for the group from the power ...
Mark Hagen   +2 more
wiley   +1 more source

Home - About - Disclaimer - Privacy