Results 321 to 330 of about 2,090,504 (365)

Enhancing Low‐Temperature Performance of Sodium‐Ion Batteries via Anion‐Solvent Interactions

open access: yesAdvanced Functional Materials, EarlyView.
DOL is introduced into electrolytes as a co‐solvent, increasing slat solubility, ion conductivity, and the de‐solvent process, and forming an anion‐rich solvent shell due to its high interaction with anion. With the above virtues, the batteries using this electrolyte exhibit excellent cycling stability at low temperatures. Abstract Sodium‐ion batteries
Cheng Zheng   +7 more
wiley   +1 more source

Dynamic volume compensation realizing Ah-level all-solid-state silicon-sulfur batteries. [PDF]

open access: yesNat Commun
Hu Z   +15 more
europepmc   +1 more source

Mg2+/Al3+ Co‐doped Li‐Rich Manganese‐Based Oxides for Boosting Rate Performance and Stability of Lithium‐Ion Batteries

open access: yesAdvanced Functional Materials, EarlyView.
The co‐doping strategy can effectively address the challenges associated with LRMOs cathode materials, providing a promising pathway for the development of high energy density and resilient cathode materials in the next‐generation lithium‐ion batteries. Abstract Lithium‐rich manganese‐based oxides (LRMOs) are promising cathode materials for lithium‐ion
Junxia Meng   +11 more
wiley   +1 more source

High Thermoelectric Performance in Low‐Cost Cu8SiSxSe6‐x Argyrodite

open access: yesAdvanced Functional Materials, EarlyView.
This study discovers the great potential of Cu8SiSxSe6‐x argyrodites as new, low‐cost, Te‐free thermoelectric materials. The proposed defect scheme suppresses the phase transition, enhances the weighted mobility and optimizes the grain boundary contacts.
Taras Parashchuk   +7 more
wiley   +1 more source

Reassessing anionic redox in conventional layered oxide cathodes for Li-ion batteries: ionic and covalent mechanisms. [PDF]

open access: yesChem Sci
Yin J   +15 more
europepmc   +1 more source

Supercompliant Lattice Boosts n‐type AgSbTe2 Thermoelectrics

open access: yesAdvanced Functional Materials, EarlyView.
The supercompliant lattice design enables the first realization of n‐type electrical transport in AgSbTe2 by overcoming intrinsic electron‐killer defects and exceeding the doping limits imposed by the conventional Hume–Rothery rule. Accordingly, the best performance n‐type Ag0.8Na0.3Sb0.6Bi0.4Te2 sample achieves a low κ of 0.27 W·m−1·K−1 that ...
Ruoyan Li   +15 more
wiley   +1 more source

Optical Control of Ferroelectric Imprint in BiFeO3

open access: yesAdvanced Functional Materials, EarlyView.
Above‐bandgap irradiation at room temperature enables on‐demand optical control of defect‐driven built‐in electric fields in BiFeO₃ thin films, fabricated via scalable, chemical spray pyrolysis. These fields, otherwise “frozen‐in,” can cause severe device degradation, including non‐switchable polarization, dead layers near interfaces, and polarization ...
Haoze Zhang   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy