Results 271 to 280 of about 1,858,099 (308)
Generalized non-Hermitian Hamiltonian for guided resonances in photonic crystal slabs. [PDF]
Nguyen VA +8 more
europepmc +1 more source
Steric Restraints in Redox-Active Guanidine Ligands and Their Impact on Coordination Chemistry. [PDF]
Engels E +7 more
europepmc +1 more source
A constitutive relationship for jointed rock mass considering the change of roughness and its application. [PDF]
Li X, Zhang G, Chen X, Yang C.
europepmc +1 more source
SMOLM-LFM: ratiometric single molecule orientation without polarizers
Vesga AG +7 more
europepmc +1 more source
Some of the next articles are maybe not open access.
Related searches:
Related searches:
Physical Review D, 1973
We argue that the locations of poles in complex helicity are determined completely by the Regge poles in complex angular momentum. They lie at sense'' values of the helicity, m = alpha i, alpha i l, alpha i, - 2,..., relative to the angular momentum singularities at j = alpha i.
R. C. Brower +4 more
openaire +1 more source
We argue that the locations of poles in complex helicity are determined completely by the Regge poles in complex angular momentum. They lie at sense'' values of the helicity, m = alpha i, alpha i l, alpha i, - 2,..., relative to the angular momentum singularities at j = alpha i.
R. C. Brower +4 more
openaire +1 more source
Out-of-plane metalloporphyrin complexes
Journal of Chemical Education, 1975Abstract : Recent progress in the chemistry of synthetic metalloporphyrins has shown that the porphyrin moiety can act as a bi-, tri- or hexadentate ligand, as well as the usual tetradentate ligand. In addition, the metal ion has been observed to possess 4, 5, 6 or 8-coordination.
G A, Taylor, M, Tsutsui
openaire +2 more sources
Formalizing complex plane geometry
Annals of Mathematics and Artificial Intelligence, 2014zbMATH Open Web Interface contents unavailable due to conflicting licenses.
Marić, Filip, Petrović, Danijela
openaire +2 more sources
Functional Analysis and Its Applications, 1985
Es wird ein linearer Komplex von \(k\)-dimensionalen Unterräumen definiert und untersucht. Sei \(H\) ein linearer Raum mit \(H\cong Hom(U\quad W)\cong U^*\otimes W\), wobei \(U, W\) lineare Räume mit \(\dim U=k+1\), \(\dim W=n-k\), \(\dim H=(k+1)(n-k)\) sind, dann sagen wir, daß der Raum \(H\) eine Grassmannsche Struktur hat.
openaire +2 more sources
Es wird ein linearer Komplex von \(k\)-dimensionalen Unterräumen definiert und untersucht. Sei \(H\) ein linearer Raum mit \(H\cong Hom(U\quad W)\cong U^*\otimes W\), wobei \(U, W\) lineare Räume mit \(\dim U=k+1\), \(\dim W=n-k\), \(\dim H=(k+1)(n-k)\) sind, dann sagen wir, daß der Raum \(H\) eine Grassmannsche Struktur hat.
openaire +2 more sources

