Results 251 to 260 of about 150,988 (321)

A Barzilai-Borwein $l_1$-Regularized Least Squares Algorithm for Compressed Sensing

open access: green, 2009
Robert Broughton   +3 more
openalex   +2 more sources

High Thermoelectric Performance in Low‐Cost Cu8SiSxSe6‐x Argyrodite

open access: yesAdvanced Functional Materials, EarlyView.
This study discovers the great potential of Cu8SiSxSe6‐x argyrodites as new, low‐cost, Te‐free thermoelectric materials. The proposed defect scheme suppresses the phase transition, enhances the weighted mobility and optimizes the grain boundary contacts.
Taras Parashchuk   +7 more
wiley   +1 more source

Supercompliant Lattice Boosts n‐type AgSbTe2 Thermoelectrics

open access: yesAdvanced Functional Materials, EarlyView.
The supercompliant lattice design enables the first realization of n‐type electrical transport in AgSbTe2 by overcoming intrinsic electron‐killer defects and exceeding the doping limits imposed by the conventional Hume–Rothery rule. Accordingly, the best performance n‐type Ag0.8Na0.3Sb0.6Bi0.4Te2 sample achieves a low κ of 0.27 W·m−1·K−1 that ...
Ruoyan Li   +15 more
wiley   +1 more source

Transient Stiffness Patterning in Hydrogels Driven by Dissipative Mechanochemical Coupling

open access: yesAdvanced Functional Materials, EarlyView.
Force‐induced disulfide bond rupture in a polymer‐based hydrogel, coupled with chemical or electrochemical reoxidation, leads to the transient modulation of the hydrogel's stiffness properties. High spatiotemporal control is achieved by this dissipative process, enabling the development of out‐of‐equilibrium stiffness patterns and transient, dose ...
Roberto Baretta   +2 more
wiley   +1 more source

Compressed sensing reconstruction for high-SNR, rapid dissolved 129Xe gas exchange MRI. [PDF]

open access: yesMagn Reson Med
Pilgrim-Morris JH   +5 more
europepmc   +1 more source

“Writing” Crystal Phases in Amorphous Calcium Carbonate via Laser‐Induced Patterned Transformations

open access: yesAdvanced Functional Materials, EarlyView.
Laser‐induced crystallization enabling the patterning of amorphous calcium carbonate into various distinct phases is introduced. This approach provides spatial control over polymorph selection, both crystalline and amorphous, inspired by biomineralization pathways.
Hadar Shaked   +6 more
wiley   +1 more source

Home - About - Disclaimer - Privacy