Results 71 to 80 of about 122,061 (212)
This article presents the development of Fe‐Mn‐Zn nanocrystalline alloys (0–9 wt% Zn) by mechanical alloying and subsequently hot pressing. Their microstructure, density, hardness, wear resistance, corrosion behavior, and antibacterial properties are systematically examined.
Ilker Emin Dag+3 more
wiley +1 more source
This study presents the development and characterization of injectable nanocomposite hydrogels based on N‐succinyl chitosan, oxidized guar gum, and bacterial cellulose nanofibers. Emphasizing enhanced mechanical properties and biocompatibility, the hydrogels exhibit fast gelation, improved structural integrity, and reduced swelling. Their potential for
Raimundo Nonato Fernandes Moreira Filho+8 more
wiley +1 more source
This study models static recrystallization in interstitial free‐steel using coupled crystal plasticity and phase‐field simulations. The method directly links heterogeneous dislocation density to nucleation site prediction, eliminating reliance on empirical assumptions.
Alireza Rezvani+2 more
wiley +1 more source
Primary phases and a fatigue crack are studied in a forged blank of an aluminum alloy using synchrotron and laboratory X‐ray computed tomography. To image the crack, the fatigue test is interrupted, and a static tensile load is applied to open the crack.
Jakob Schröder+6 more
wiley +1 more source
In this research, ZrC coatings are evaluated against various counterprobes at the microscale using novel super‐stiff atomic force microscopy cantilevers. The chemical composition of the coating is shown to be an important factor influencing coating hardness and Young's modulus, while surface roughness, counterprobe hardness, and surface energy are the ...
Piotr Jenczyk+4 more
wiley +1 more source
Profilometry‐Based Indentation Plastometry Testing of Tungsten at High Temperature
Profilometry‐based indentation plastometry (PIP) allows extraction of stress‐strain curves from indent profiles. Tungsten is of industrial interest but is brittle at room temperature. It does plastically deform at higher temperatures. Excellent agreement is obtained between the two techniques in this regime, but PIP also gives plasticity ...
James Rees Miller+3 more
wiley +1 more source
The influence of oxide nanoparticle synthesis route and concentration on microstructure and high‐temperature performance of additively manufactured oxide dispersion‐strengthened steels is investigated. Comparing laser‐generated and chemically synthesized ZrO2 nanoparticles, the study reveals how dispersion quality, crystal structure and particle size ...
Mareen Goßling+12 more
wiley +1 more source
This study presents a 3D representative volume element‐based simulation approach to predict mesoscopic residual stress and strain fields in silicon solid solution‐strengthened ductile cast iron. By modeling phase transformation kinetics with an enhanced Johnson–Mehl–Avrami–Kolmogorov model, the effects of varying cooling rates on residual stresses are ...
Lutz Horbach+6 more
wiley +1 more source
A new experimental setup, incorporating digital image correlation and infrared thermography in combination with inductive‐conductive heating for precise temperature control, is used to analyze the mechanical behavior and microstructural changes of sheet metal under complex thermomechanical test conditions that represent quench and partitioning ...
Christian Illgen+4 more
wiley +1 more source
Residual Stress States in Microstructurally Graded PBF–LB/M Austenitic Steel Components
This study examines microstructurally graded 316L rectangular tube profiles fabricated via PBF–LB/M using a dual‐laser system. A 1 kW top‐hat and a 400 W Gaussian laser create distinct grain sizes and crystallographic texture. Mechanical properties are linked to microstructural evolution driven by processing conditions.
Nico Möller+5 more
wiley +1 more source