Results 141 to 150 of about 1,858,322 (315)
In this study, the mechanical response of Y‐shaped core sandwich beams under compressive loading is investigated, using deep feed‐forward neural networks (DFNNs) for predictive modeling. The DFNN model accurately captures stress–strain behavior, influenced by design parameters and loading rates.
Ali Khalvandi +4 more
wiley +1 more source
Bistable Mechanisms 3D Printing for Mechanically Programmable Vibration Control
This work introduces a 3D‐printed bistable mechanism integrated into tuned mass dampers (TMDs) for mechanically adaptive passive vibration suppression. Through optimized geometry, the bistable design provides adaptable vibration reduction across a broad range of scenarios, achieving effective vibration mitigation without complex controls or external ...
Ali Zolfagharian +4 more
wiley +1 more source
Hyperoptimized Approximate Contraction of Tensor Networks with Arbitrary Geometry
Tensor network contraction is central to problems ranging from many-body physics to computer science. We describe how to approximate tensor network contraction through bond compression on arbitrary graphs.
Johnnie Gray, Garnet Kin-Lic Chan
doaj +1 more source
Stress Concentrators in Metal Materials in the Conditions of Uniform Compression
The proposed model uses modern concepts of mechanics as well as solid-state physics and metal physics to consider the behaviours of single- and polycrystalline states of metal materials in the conditions of uniform compression, when there are two types ...
P. Yu. Volosevich
doaj +1 more source
This study demonstrates a novel, additive manufacturing approach to produce complex, porous tungsten carbide structures using water‐based direct ink writing/robocasting. Leveraging a modified commercial printer and heat treatment, the process yields lightweight, electrically conductive 3D architectures capable of supporting a mechanical load.
James Bentley Bevis +3 more
wiley +1 more source
Multiscale Modeling of Process‐Induced Defects in Fused Filament Fabrication‐Printed Materials
This study presents a predictive multiscale modeling tool for defect analysis of fused filament fabricated‐printed materials and their performance prediction using a mechanistic data science‐based reduced‐order modeling approach. Process‐induced defects are inherent to additively manufactured parts and significantly influence the performance of printed
Satyajit Mojumder +3 more
wiley +1 more source
Application of shock compression science to Earth and planetary physics [PDF]
Thomas J. Ahrens
openalex +1 more source
Direct Consolidation of Copper–Graphene Composite by Rotary Swaging
The applicability of the rotary swaging method for preparation of electroconductive copper–graphene composite by direct consolidation of powders is proven. The consolidated material features advantageous microstructure featuring fine grains and twins, with homogeneous distribution of graphene, primarily along the twin boundaries, which contribute to ...
Radim Kocich +2 more
wiley +1 more source
This study investigates the mechanical properties of Carbon/Aramid intraply hybrid fiber‐reinforced Elium composites under 6 months of water aging. After aging, flexural strength decreases by 25.89%, tensile strength by 4.40%, and fracture toughness by 21.56%.
Muhammed Huseyin Guzel, Gurol Onal
wiley +1 more source
Enabling pulse compression and proton acceleration in a modular ICF driver for nuclear and particle physics applications [PDF]
F. Terranova +4 more
openalex +1 more source

