Results 251 to 260 of about 638,897 (327)

Atomic Size Misfit for Electrocatalytic Small Molecule Activation

open access: yesAdvanced Functional Materials, EarlyView.
This review explores the application and mechanisms of atomic size misfit in catalysis for small molecule activation, focusing on how structural defects and electronic properties can effectively lower the energy barriers of chemical bonds in molecules like H2O, CO2, and N2.
Ping Hong   +3 more
wiley   +1 more source

Rapid Detection of Biological and Chemical Threat Agents Using Physical Chemistry, Active Detection, and Computational Analysis

open access: green, 2007
Myung Ae Chung   +15 more
openalex   +2 more sources

Copper‐based Materials for Photo and Electrocatalytic Process: Advancing Renewable Energy and Environmental Applications

open access: yesAdvanced Functional Materials, EarlyView.
Cu‐based catalysts as a cornerstone in advancing sustainable energy technologies are fully reviewed in this manuscript, highlighting their potential in photo‐ and electrocatalysis. It includes metallic copper, copper oxides, copper sulfides, copper halide perovskites, copper‐based metal–organic frameworks (MOFs), and covalent organic frameworks (COFs),
Jéssica C. de Almeida   +16 more
wiley   +1 more source

Single‐Step Conversion of Metal Impurities in CNTs to Electroactive Metallic Nitride Nanoclusters for Electrochemical CO2 Reduction

open access: yesAdvanced Functional Materials, EarlyView.
A single‐step, low‐temperature co‐pyrolysis process removes encapsulated seed metal NPs (10–50 nm) from CNTs, redistributing them as surface‐anchored metal and metal–nitride NCs (1–1.5 nm). Herein, Ni3N NCs achieve an ultra‐low onset overpotential for CO2 reduction to CO with >98% Faradaic efficiency across 100–700 mA cm−2.
Ahmed Badreldin   +15 more
wiley   +1 more source

Engineering Active CeO2/Fe3C Interfacial Sites to Generate High‐Charge‐Density Fe for Enhanced Oxygen Reduction Reaction Efficiency

open access: yesAdvanced Functional Materials, EarlyView.
A well‐modulated CeO2/Fe3C heterostructure is successfully constructed. The electron redistribution induced by CeO2 not only enhances the formation energy of Fe vacancies and hinders the dissolution of Fe but also reduces the energy barrier of the ORR.
Peng Wang   +8 more
wiley   +1 more source

Alignment-free Prediction of Ribonucleases using a Computational Chemistry approach: Comparison with HMM model and Isolation from Schizosaccharomyces pombe, Prediction, and Experimental assay of a new sequence

open access: hybrid, 2008
Guillermı́n Agüero-Chapin   +6 more
openalex   +1 more source

Copper Doping Enhances the Activity and Selectivity of Atomically Precise Ag44 Nanoclusters for Photocatalytic CO2 Reduction

open access: yesAdvanced Functional Materials, EarlyView.
By a simple anti‐Galvanic reaction, up to six copper atoms could be preferably doped into the Ag2(SR)5 staple motifs and Ag20 dodecahedral shell of an atomically precise Ag44(SR)30 nanocluster. When anatase TiO2 is used as substrate, the (AgCu)44/TiO2 photocatalyst exhibited much improved activity in photocatalytic CO2 reduction compared to Ag44/TiO2 ...
Ye Liu   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy