Results 101 to 110 of about 500,399 (326)
Mathematical strategame theory and biomolecular mediated computing [PDF]
Mathematical Strategame Theory (MST) and Biomolecular Mediated Computing (BMC) is a self-developed and fulfilled cross-disciplinary research field, which made up of one theoretical work and one practical work. The theoretical work of the research is referring to as Mathematical Strategame Theory (MST).
openaire +4 more sources
Unleashing the Power of Machine Learning in Nanomedicine Formulation Development
A random forest machine learning model is able to make predictions on nanoparticle attributes of different nanomedicines (i.e. lipid nanoparticles, liposomes, or PLGA nanoparticles) based on microfluidic formulation parameters. Machine learning models are based on a database of nanoparticle formulations, and models are able to generate unique solutions
Thomas L. Moore +7 more
wiley +1 more source
Reconfigurable 3D Magnetic Nanoarchitectures
This experimental study confirms that 3D magnetic tetrapods grown by focused electron beam‐induced deposition exhibit sequential, controllable magnetization reversal in the individual nanowire legs. The magnetic state of the nanoarchitecture can be controlled individually, on‐demand, through a variation of the direction and magnitude of the applied ...
Sabri Koraltan +8 more
wiley +1 more source
We present a conjecture, based on computational results, on the area minimizing way to enclose and separate two arbitrary volumes in the flat cubic 3-torus.
Beheshti, Shabnam +3 more
core
Quantifying Spin Defect Density in hBN via Raman and Photoluminescence Analysis
An all‐optical method is presented for quantifying the density of boron vacancy spin defects in hexagonal boron nitride (hBN). By correlating Raman and photoluminescence signals with irradiation fluence, defect‐induced Raman modes are identified and established an relationship linking optical signatures to absolute defect densities. This enables direct
Atanu Patra +8 more
wiley +1 more source
Electrochemical Formation of BiVO4/BiPO4 Photoanodes for Enhanced Selectivity toward H2O2 Generation
In acidic KPi, V dissolves from the BiVO4 lattice, while adsorbed phosphate reacts with the electrode under an external bias, forming a BiPO4 surface layer. This BiPO4 layer exhibits stronger bicarbonate adsorption, redirecting the water oxidation pathway toward two‐electron H2O2 production.
Kaijian Zhu +12 more
wiley +1 more source
Either, Or. Exploration of an Emerging Decision Theory. [PDF]
A novel decision theory is emerging out of sparse findings in economics, mathematics and, most importantly, psychology and computational cognitive science.
Fioretti, Guido
core +1 more source
In situ TEM uncovers the atomic‐scale mechanisms underlying hydrogen‐driven γ‐Fe2O3→Fe3O4→FeO reduction. In γ‐Fe2O3, oxygen vacancies cluster around intrinsic Fe vacancies, leading to nanopore formation, whereas in Fe3O4, vacancy aggregation is suppressed, preserving a dense structure.
Yupeng Wu +14 more
wiley +1 more source
The emerging field of MXene/MBene materials has progressed rapidly, advancing diverse research fields, including biomedical engineering, biomedicine, agriculture, and the environment. This nanobiotechnology can tackle longstanding challenges in these areas.
Alireza Rafieerad, Ahmad Amiri
wiley +1 more source
Developing a mathematical theory of computability which speaks the language of levels
The authors use modern systems theory to retrace the history of some important and interesting philosophical problems. Namely, they introduce a mathematical theory of multilevels and apply this theory to study two problems of modern physics: The hypothesis on the rest mass of the photon and a new look at Dirac's \(\delta\) function.
Yi Lin, Wang Shu-Tang
openaire +3 more sources

