Results 71 to 80 of about 1,008,187 (306)

Single‐Step Synthesis of In‐plane 1T'‐2H Heterophase MoTe2 for Low‐Resistance Contacts

open access: yesAdvanced Functional Materials, EarlyView.
A single‐step CVD method is developed to synthesize seamless in‐plane 1T'‐2H MoTe2 heterophase junctions with precise phase control and uniform large‐area coverage. The resulting transistors, incorporating 1T' MoTe2 contacts and 2H MoTe2 channels, exhibit ultralow contact resistance, offering a scalable solution to the long‐standing challenge of ...
Ye Lin   +9 more
wiley   +1 more source

Unveiling Phonon Contributions to Thermal Conductivity and the Applicability of the Wiedemann—Franz Law in Ruthenium and Tungsten Thin Films

open access: yesAdvanced Functional Materials, EarlyView.
Thermal transport in Ru and W thin films is studied using steady‐state thermoreflectance, ultrafast pump–probe spectroscopy, infrared‐visible spectroscopy, and computations. Significant Lorenz number deviations reveal strong phonon contributions, reaching 45% in Ru and 62% in W.
Md. Rafiqul Islam   +14 more
wiley   +1 more source

Steep‐Switching Memory FET for Noise‐Resistant Reservoir Computing System

open access: yesAdvanced Functional Materials, EarlyView.
We demonstrate the steep‐switching memory FET with CuInP2S6/h‐BN/α‐In2Se3 heterostructure for application in noise‐resistant reservoir computing systems. The proposed device achieves steep switching characteristics (SSPGM = 19 mV/dec and SSERS = 23 mV/dec) through stabilization between CuInP2S6 and h‐BN.
Seongkweon Kang   +6 more
wiley   +1 more source

Tailored Reconstruction of Polycrystalline CuO Nanorods Promotes C─C Coupling in CO2 Electroreduction

open access: yesAdvanced Functional Materials, EarlyView.
Controlling the polycrystallinity of CuO nanorods enables directional reconstruction into rod‐like structures that stabilize Cu(OH)2 and increase Cu+ ratios, while modulating interfacial water dynamics to enhance C─C coupling and boost C2+ product formation in CO2 electroreduction.
Hyeon‐Seok Bang   +15 more
wiley   +1 more source

Lithium‐Ion/Lithium Metal Hybrid Batteries Enabled by Lithio‐Amphiphilic Bilayer Protection

open access: yesAdvanced Functional Materials, EarlyView.
Lithium‐ion/Lithium metal hybrid batteries couple intercalation and plating mechanisms, yet are plagued by lithium dendrite formation. Here, a lithio‐amphiphilic bilayer comprising silver (Ag)/chromium(Cr) thin films is sequentially deposited on the graphite anode.
Jihoon Oh   +12 more
wiley   +1 more source

Photoswitching Conduction in Framework Materials

open access: yesAdvanced Functional Materials, EarlyView.
This mini‐review summarizes recent advances in state‐of‐the‐art proton and electron conduction in framework materials that can be remotely and reversibly switched on and off by light. It discusses the various photoswitching conduction mechanisms and the strategies employed to enhance photoswitched conductivity.
Helmy Pacheco Hernandez   +4 more
wiley   +1 more source

Encapsulating Zinc Powder in MXene/Silk Scaffolds with Zincophilic‐Hydrophobic Polymer for Flexible Zinc‐Ion Batteries

open access: yesAdvanced Functional Materials, EarlyView.
This work develops flexible zinc‐ion batteries (FZIBs) using a zincophilic/hydrophobic polymer (thermoplastic polycarbonate‐based polyurethane, TPCU) to protect Zn powder anodes and MXene/Silk (MXS) as flexible current collectors. The designed TPCU‐ZnP@MXS structure enables uniform Zn deposition, yielding dendrite‐free anodes with stable cycling ...
Zixuan Yang   +8 more
wiley   +1 more source

Locking Metastable Topological Domains in Nematic Liquid Crystal Pi Cells

open access: yesAdvanced Functional Materials, EarlyView.
Selective photopolymerization in the presence of a controlled voltage defines permanent director walls that lock‐in metastable bend and twist configurations within nematic liquid crystal Pi cells. Q‐tensor simulations corroborate the experiments, demonstrating the topological state stabilization.
Adithya Pradeep   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy