Results 161 to 170 of about 112,027 (304)
Thermoelectric temperature sensors are developed that directly measure heat changes during optical‐based neural stimulation with millisecond precision. The sensors reveal the temperature windows for safe reversible neural modulation: 1.4–4.5 °C enables reversible neural inhibition, while temperatures above 6.1 °C cause permanent thermal damage.
Junhee Lee +9 more
wiley +1 more source
Ultralight 3D nanofibrous aerogels embedded with metal‐organic frameworks effectively capture and neutralize toxic gases and organophosphonates. Incorporating mesoporous UiO‐66‐NH2 and HKUST‐1 into PAN/PVP fibers enables high MOF loading while maintaining mechanical strength and structural stability.
Mai O. Abdelmigeed +6 more
wiley +1 more source
Correction: A GAN-Based Approach for enhancing security in satellite based IoT networks using MPI enabled HPC. [PDF]
Ahmad SZ +6 more
europepmc +1 more source
In Situ Study of Resistive Switching in a Nitride‐Based Memristive Device
In situ TEM biasing experiment demonstrates the volatile I‐V characteristic of MIM lamella device. In situ STEM‐EELS Ti L2/L3 ratio maps provide direct evidence of the oxygen vacancies migrations under positive/negative electrical bias, which is critical for revealing the RS mechanism for the MIM lamella device.
Di Zhang +19 more
wiley +1 more source
Correction: Synchronizing LLM-based semantic knowledge bases via secure federated fine-tuning in semantic communication. [PDF]
Li L +6 more
europepmc +1 more source
Towards Approaches to Continuous Assessment of Cyber Risk in Security of Computer Networks [PDF]
Alexander Kott, Curtis Arnold
openalex +1 more source
Application of artificial intelligence in computer network security
Lei Zhang, Zening Chen, Shufeng Yang
openalex +1 more source
Grain Boundary Space Charge Engineering of Solid Oxide Electrolytes: Model Thin Film Study
This study demonstrates unprecedented control of grain boundary electrical properties in solid electrolytes. Selective diffusion of cations through grain boundaries in thin films enables 12 orders of magnitude variation in ionic resistance, proving that systematic chemical modification of grain boundary electrical properties is feasible.
Thomas Defferriere +5 more
wiley +1 more source

