Existence of solution to a critical equation with variable exponent [PDF]
In this paper we study the existence problem for the $p(x)-$Laplacian operator with a nonlinear critical source. We find a local condition on the exponents ensuring the existence of a nontrivial solution that shows that the Pohozaev obstruction does not ...
Bonder, Julián Fernández +2 more
core +1 more source
In this paper, we consider the existence and multiplicity of solutions for fractional Schrödinger equations with critical nonlinearity in RN. We use the fractional version of Lions' second concentration-compactness principle and concentration-compactness
Ziwei Piao, Chenxing Zhou, Sihua Liang
doaj +1 more source
Existence and Symmetry of Solutions for a Class of Fractional Schrödinger–Poisson Systems
In this paper, we investigate a class of Schrödinger–Poisson systems with critical growth. By the principle of concentration compactness and variational methods, we prove that the system has radially symmetric solutions, which improve the related results
Yongzhen Yun, Tianqing An, Guoju Ye
doaj +1 more source
Solitary waves in nonlocal NLS with dispersion averaged saturated nonlinearities [PDF]
A nonlinear Schr\"odinger equation (NLS) with dispersion averaged nonlinearity of saturated type is considered. Such a nonlocal NLS is of integro-differential type and it arises naturally in modeling fiber-optics communication systems with periodically ...
Hundertmark, Dirk +3 more
core +3 more sources
Nodal solutions for the Choquard equation [PDF]
We consider the general Choquard equations $$ -\Delta u + u = (I_\alpha \ast |u|^p) |u|^{p - 2} u $$ where $I_\alpha$ is a Riesz potential. We construct minimal action odd solutions for $p \in (\frac{N + \alpha}{N}, \frac{N + \alpha}{N - 2})$ and ...
Ghimenti, Marco, Van Schaftingen, Jean
core +2 more sources
Existence of Solutions for p-Kirchhoff Problem of Brézis-Nirenberg Type with Singular Terms
In this paper, we prove the existence of positive solution for a p-Kirchhoff problem of Brézis-Nirenberg type with singular terms, nonlocal term, and the Caffarelli-Kohn-Nirenberg exponent by using variational methods, concentration compactness, and ...
Atika Matallah +2 more
doaj +1 more source
Ground states for scalar field equations with anisotropic nonlocal nonlinearities [PDF]
We consider a class of scalar field equations with anisotropic nonlocal nonlinearities. We obtain a suitable extension of the well-known compactness lemma of Benci and Cerami to this variable exponent setting, and use it to prove that the Palais-Smale ...
Iannizzotto, Antonio +2 more
core +1 more source
Concentration Compactness for the Critical Maxwell-Klein-Gordon Equation [PDF]
We prove global regularity, scattering and a priori bounds for the energy critical Maxwell-Klein-Gordon equation relative to the Coulomb gauge on (1+4)-dimensional Minkowski space.
Krieger, Joachim, Luhrmann, Jonas
core +2 more sources
Semiclassical stationary states for nonlinear Schr\"odinger equations under a strong external magnetic field [PDF]
We construct solutions to the nonlinear magnetic Schr\"odinger equation $$ \left\{ \begin{aligned} - \varepsilon^2 \Delta_{A/\varepsilon^2} u + V u &= \lvert u\rvert^{p-2} u & &\text{in}\ \Omega,\\ u &= 0 & &\text{on}\ \partial\Omega, \end{aligned}
Di Cosmo, Jonathan +1 more
core +2 more sources
The concentration-compactness principles for W s,p(·,·)(ℝ N ) and application [PDF]
Abstract We obtain a critical imbedding and then, concentration-compactness principles for fractional Sobolev spaces with variable exponents. As an application of these results, we obtain the existence of many solutions for a class of critical nonlocal problems with variable exponents, which is even new for constant exponent case.
Ky Ho, Yun-Ho Kim
openaire +2 more sources

