Results 191 to 200 of about 246,119 (286)

Engineering Novel DNA Nanoarchitectures for Targeted Drug Delivery and Aptamer Mediated Apoptosis in Cancer Therapeutics

open access: yesAdvanced Functional Materials, EarlyView.
Designer DNA Architecture‐templated Drug Conjugates (DDA‐DCs) are comprised of a DNA nanomaterial decorated with multiple drug‐loaded DNA aptamers. DDA‐DCs use a combination of multiple aptamer types, each recognizing a different membrane protein to achieve precise targeting of cancer cells.
Abhisek Dwivedy   +19 more
wiley   +1 more source

Sono‐Piezo‐Photosynthesis of Ethylene and Acetylene from Bioethanol under Ambient Conditions

open access: yesAdvanced Functional Materials, EarlyView.
A novel sono‐piezo‐photocatalytic strategy enables the conversion of bioethanol to ethylene (C2H4) and acetylene (C2H2) under ambient conditions, addressing the limitations of conventional methods that are high‐temperature and energy‐intensive. By using an advanced graphene oxide/sodium bismuth titanate heterostructure catalyst, this work achieved ...
Yue Jiang   +21 more
wiley   +1 more source

Handling concurrent admission control in multiservice IP networks [PDF]

open access: green, 2006
Solange Rito Lima   +2 more
openalex   +1 more source

H2O2‐Generating Advanced Nanomaterials for Cancer Treatment

open access: yesAdvanced Functional Materials, EarlyView.
H2O2‐generating nanoplatforms can exploit tumor redox imbalance for O2 and toxic reactive oxygen species generation, leading to hypoxia reversal, and apoptosis of cancer cells, respectively. This review highlights the mechanisms of these nanoplatforms, including exogenous H₂O₂ delivery, endogenous amplification, and metal peroxides, which leads to ...
Kiyan Musaie   +8 more
wiley   +1 more source

Alleviation of Aging‐Related Hallmarks in a Mouse Model of Progeria via a Nanoparticle‐Based Artificial Transcription Factor

open access: yesAdvanced Functional Materials, EarlyView.
Oct4‐nanoscript, a biomimetic nanoparticle‐based artificial transcription factor, precisely regulates cellular rejuvenation by activating Oct4 target genes, restoring epigenetic marks, and reducing DNA damage. In a progeria model, it effectively rescued aging‐associated pathologies and extended lifespan.
Hongwon Kim   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy