Results 61 to 70 of about 147,522 (281)
Fe─NC porous oxygen reduction electrocatalysts are prepared employing a 2,4,6‐Triaminopyrimidine‐based porous organic polymer, a Mg2+ Lewis acid, and a low‐temperature cation exchange protocol. Using the polymer precursor achieves high pyrolysis yields and results in atomically dispersed FeNx sites. The resulting catalysts feature hierarchical porosity
Eliot Petitdemange +11 more
wiley +1 more source
We develop a multiscale hybrid scheme for simulations of soft condensed matter systems, which allows one to treat the system at the particle level in selected regions of space, and at the continuum level elsewhere.
Behringer, Hans +2 more
core +1 more source
Mesoporous Carbon Thin Films with Large Mesopores as Model Material for Electrochemical Applications
Mesoporous carbon thin films possessing 70 nm mesopores are prepared on titanium substrates by soft templating of resol resins with a self‐synthesized poly(ethylene oxide)‐block‐poly(hexyl acrylate) block copolymer. A strategy to avoid corrosion of the metal substrate is presented, and the films are extensively characterized in terms of morphology ...
Lysander Q. Wagner +9 more
wiley +1 more source
Electron–Matter Interactions During Electron Beam Nanopatterning
This article reviews the electron–matter interactions important to nanopatterning with electron beam lithography (EBL). Electron–matter interactions, including secondary electron generation routes, polymer radiolysis, and electron beam induced charging, are discussed.
Camila Faccini de Lima +2 more
wiley +1 more source
Fibrous benzenetrispeptide (BTP) hydrogels, fabricated via strain‐promoted azide‐alkyne cycloaddition (SPAAC) crosslinking, form robust, bioinert networks. These hydrogels can support 3D cell culture, where cell viability and colony growth depend on the fiber content.
Ceren C. Pihlamagi +5 more
wiley +1 more source
A self‐gelling PG@PAC (POD/Gel‐CDH@PA/CHX) powder is developed for infected burn care in austere settings. Upon contact with wound exudate, it instantly forms an adhesive hydrogel, providing simultaneous hemostasis, broad‐spectrum antibacterial activity, reactive oxygen species scavenging, and immunomodulation. In a murine model of S.
Liping Zhang +14 more
wiley +1 more source
From Food to Power: Hydrogel Thermoelectrics for Ingestible Electronics
We introduce a fully edible thermoelectric–electrochromic platform that harvests heat from food and converts it into a visible color change. N‐type and p‐type hydrogel thermoelectric generators connected in series power anthocyanin‐based electrochromic displays, demonstrating the feasibility of safe, biodegradable, ingestible systems for on‐food ...
Antonia Georgopoulou +3 more
wiley +1 more source
Novel effects of strains in graphene and other two dimensional materials
The analysis of the electronic properties of strained or lattice deformed graphene combines ideas from classical condensed matter physics, soft matter, and geometrical aspects of quantum field theory (QFT) in curved spaces.
Amorim, B. +12 more
core +2 more sources
Fluorine‐Free Soft Nanocomposites for High‐Speed Liquid Impact Repellence
Fluorine‐free soft nanocomposite coatings are developed using silicone oil‐mediated mechanical‐stiffness control, enabling ‘dry’ liquid‐repellent surfaces that resist high‐speed water jet impacts up to ∼60 m/s. By tuning nanoparticle loading and oil content, the coatings also achieve >90% optical transparency, amphiphobicity with impact resistance to ...
Priya Mandal +4 more
wiley +1 more source
Artificial Intelligence as the Next Visionary in Liquid Crystal Research
The functions of AI in the research laboratory are becoming increasingly sophisticated, allowing the entire process of hypothesis formulation, material design, synthesis, experimental design, and reiterative testing to be automated. In our work, we conceive how the incorporation of AI in the laboratory environment will transform the role and ...
Mert O. Astam +2 more
wiley +1 more source

