Results 161 to 170 of about 177,681 (318)

Characterization of health care utilization in patients receiving implantable cardioverter-defibrillator therapies: An analysis of the managed ventricular pacing trial. [PDF]

open access: yes, 2017
BACKGROUND: Implantable cardioverter-defibrillators (ICDs) are effective in terminating lethal arrhythmias, but little is known about the degree of health care utilization (HCU) after ICD therapies.
Cheng, Alan   +7 more
core   +1 more source

Tapered Pillar Design for High‐Precision Force Readout in Miniaturized Engineered Heart Tissues From Human Pluripotent Stem Cells

open access: yesAdvanced Healthcare Materials, EarlyView.
Engineered heart tissues (EHTs) are a valuable approach in capturing human cardiac physiology and drug responses in vitro. Here, a novel tapered pillar design is developed in an EHT platform to confine tissues in a predefined position‐ at the middle of the pillar height.
Milica Dostanić   +9 more
wiley   +1 more source

Electroanatomical mapping assisted conduction system pacing

open access: yesIndian Pacing and Electrophysiology Journal, 2022
Shunmuga Sundaram Ponnusamy   +1 more
doaj   +1 more source

Functionalized Reduced Graphene Oxide‐Based Nanocomposite Hydrogels for Enhanced Osteogenesis in Bone Tissue Engineering

open access: yesAdvanced Healthcare Materials, EarlyView.
Charge‐opposed reduced graphene oxide fillers are co‐integrated into biopolymeric nanocomposite scaffolds, synergistically enhance osteogenesis. Multiscale characterization reveals how surface chemistry and porosity dictate ectopic mineral architecture.
George Mihail Vlăsceanu   +8 more
wiley   +1 more source

An Innovative “Tooth‐On‐Chip” Microfluidic Device Emulating the Structure and Physiology of the Dental Pulp Tissue

open access: yesAdvanced Healthcare Materials, EarlyView.
This work presents a “tooth‐on‐chip” device that mimics dental pulp tissue. By co‐culturing key cell types, it recreates vascular networks, stem cell niches, the odontoblast/dentine interface, and trigeminal innervation. This innovative platform provides a unique model of dental pulp structure and physiology, with significant potential for accelerating
Alessandro Cordiale   +6 more
wiley   +1 more source

New Insights into Pacing Induced Cardiomyopathy

open access: yesReviews in Cardiovascular Medicine
Pacing induced cardiomyopathy (PICM) can occur as a complication due to pacing the right ventricle. Its precise definition varies across different studies, leading to uncertainty as to the best approach for managing this entity. More than 10% of patients
Sung Soo Kim, Hyung Wook Park
doaj   +1 more source

Self‐Assembling Multi‐Antigen T Cell Hybridizers for Precision Immunotherapy of Multiple Myeloma

open access: yesAdvanced Healthcare Materials, EarlyView.
A novel modular T‐cell engager platform, MATCH, is developed for personalized multiple myeloma therapy. MATCH uses complementary oligonucleotide‐linked Fab’ fragments to enable flexible targeting of MM antigens and controlled T‐cell activation. The system shows potent, antigen‐specific cytotoxicity in vitro and in vivo, highlighting its potential for ...
Shannuo Li   +8 more
wiley   +1 more source

Conduction System Pacing Upgrade in Chronic Heart Failure with Severe Left Ventricular Dysfunction and Chronic Atrial Fibrillation

open access: gold, 2023
Yasumasa Nohno   +9 more
openalex   +2 more sources

Shedding Light on the Cellular Uptake Mechanisms of Bioactive Glass Nanoparticles as Controlled Intracellular Delivery Platforms: A Review of the Recent Literature

open access: yesAdvanced Healthcare Materials, EarlyView.
This review summarizes the main uptake pathways of bioactive glass nanoparticles (BGNs) and their intracellular localization, highlighting that BGNs are mainly internalized and entrapped within endosomes/lysosomes. Strategies for controlled intracellular ion release, with implications for targeted modulation of cell behavior, are discussed. The need to
Andrada‐Ioana Damian‐Buda   +1 more
wiley   +1 more source

Home - About - Disclaimer - Privacy