Results 161 to 170 of about 25,927 (280)

Dynamic Control of Synaptic Plasticity by Competing Ferroelectric and Trap‐Assisted Switching in IGZO Transistors with Al2O3/HfO2 Dielectrics

open access: yesAdvanced Functional Materials, EarlyView.
A frequency‐tunable ferroelectric synaptic transistor based on a buried‐gate InGaZnO channel and Al2O3/HfO2 dielectric stack exhibits linear and reversible weight updates using single‐polarity pulses. By switching between ferroelectric and trap‐assisted modes depending on input frequency, the device simplifies neuromorphic circuit design and achieves ...
Ojun Kwon   +8 more
wiley   +1 more source

Miniature Nanomesh Mechano‐Acoustic Sensor with Wide Linear Dynamic Range, Broad Bandwidth, and Flat Frequency Response

open access: yesAdvanced Functional Materials, EarlyView.
A miniaturized mechano‐acoustic sensor is developed using an electrospun PVDF nanomesh as the diaphragm in a capacitive sensor structure. Unlike conventional nanomesh‐based sensors, it achieves high linear sensitivity, a broad and flat frequency response, and a compact form factor.
Jeng‐Hun Lee   +8 more
wiley   +1 more source

Supraparticles Composed of Graphitic Carbon Nitride Nanoparticles and Silica‐Supported Horseradish Peroxidase as Customizable Hybrid Catalysts for Photo‐Biocatalytic Cascade Reactions in Continuous Flow

open access: yesAdvanced Functional Materials, EarlyView.
Herein presented supraparticles combine the nanoparticulate photocatalyst graphitic carbon nitride with the enzyme horseradish peroxidase, which is immobilized on silica nanoparticles. In an optimized compatibility range, both catalysts operate effectively within the hybrid supraparticles and catalyze a cascade reaction consisting of the photocatalytic
Bettina Herbig   +11 more
wiley   +1 more source

Smart, Bio‐Inspired Polymers and Bio‐Based Molecules Modified by Zwitterionic Motifs to Design Next‐Generation Materials for Medical Applications

open access: yesAdvanced Functional Materials, EarlyView.
Bio‐based and (semi‐)synthetic zwitterion‐modified novel materials and fully synthetic next‐generation alternatives show the importance of material design for different biomedical applications. The zwitterionic character affects the physiochemical behavior of the material and deepens the understanding of chemical interaction mechanisms within the ...
Theresa M. Lutz   +3 more
wiley   +1 more source

Functional Materials for Environmental Energy Harvesting in Smart Agriculture via Triboelectric Nanogenerators

open access: yesAdvanced Functional Materials, EarlyView.
This review explores functional and responsive materials for triboelectric nanogenerators (TENGs) in sustainable smart agriculture. It examines how particulate contamination and dirt affect charge transfer and efficiency. Environmental challenges and strategies to enhance durability and responsiveness are outlined, including active functional layers ...
Rafael R. A. Silva   +9 more
wiley   +1 more source

MOFs and COFs in Electronics: Bridging the Gap between Intrinsic Properties and Measured Performance

open access: yesAdvanced Functional Materials, EarlyView.
Metal‐organic frameworks (MOFs) and covalent organic frameworks (COFs) hold promise for advanced electronics. However, discrepancies in reported electrical conductivities highlight the importance of measurement methodologies. This review explores intrinsic charge transport mechanisms and extrinsic factors influencing performance, and critically ...
Jonas F. Pöhls, R. Thomas Weitz
wiley   +1 more source

Multicolor Optoelectronic Synapse Enabled by Photon‐Modulated Remote Doping in Solution‐Processed Van Der Waals Heterostructures

open access: yesAdvanced Functional Materials, EarlyView.
Multicolor optoelectronic synapses are realized by vertically integrating solution‐processed MoS2 thin‐film and SWCNT. The electronically disconnected but interactive MoS2 enables photon‐modulated remote doping, producing a bi‐directional photoresponse.
Jihyun Kim   +8 more
wiley   +1 more source

Unleashing the Power of Machine Learning in Nanomedicine Formulation Development

open access: yesAdvanced Functional Materials, EarlyView.
A random forest machine learning model is able to make predictions on nanoparticle attributes of different nanomedicines (i.e. lipid nanoparticles, liposomes, or PLGA nanoparticles) based on microfluidic formulation parameters. Machine learning models are based on a database of nanoparticle formulations, and models are able to generate unique solutions
Thomas L. Moore   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy