Results 231 to 240 of about 159,992 (337)

A Programmable Semiconductor Containing Active Molecular Photoswitches Located in the Crystal's Volume Phase

open access: yesAdvanced Functional Materials, EarlyView.
A novel approach for the design of functional semiconductors is presented, which utilizes the excellent optoelectronic properties of layered hybrid perovskites and the possibility to introduce a molecular photoswitch as the organic spacer. This concept is successfully demonstrated on a coumarin‐based system with the possibility to change the bandgap ...
Oliver Treske   +4 more
wiley   +1 more source

Computing black hole entropy in loop quantum gravity from a conformal field theory perspective [PDF]

open access: green, 2009
Ivan Agullo   +5 more
openalex   +1 more source

Bio‐Inspired Molecular Events in Poly(Ionic Liquids)

open access: yesAdvanced Functional Materials, EarlyView.
Originating from dipolar and polar inter‐ and intra‐chain interactions of the building blocks, the topologies and morphologies of poly(ionic liquids) (PIL) govern their nano‐ and micro‐processibility. Modulating the interactions of cation‐anion pairs with aliphatic dipolar components enables the tunability of properties, facilitated by “bottom‐up ...
Jiahui Liu, Marek W. Urban
wiley   +1 more source

A Unified Conformal Field Theory Description¶of Paired Quantum Hall States [PDF]

open access: green, 1999
A. Cappelli   +5 more
openalex   +1 more source

Organometallic Precursor‐Induced Gradient Architecture on Multilayer Nanoporous Graphene Membranes for Precise Organic Solvent Nanofiltration

open access: yesAdvanced Functional Materials, EarlyView.
Alumina growth narrows surface pores and seals non‐selective defects, enhancing selectivity while preserving the nanoporous graphene architecture. Additionally, the deposition enables gradient‐controlled structural modification, with intergrown alumina acting as a physical cross‐linker that stabilizes the laminar structure.
Junhyeok Kang   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy