Results 191 to 200 of about 2,841,275 (318)
Abstract Three instruments–Raman spectroscopy, attenuated total reflectance–Fourier transform infrared spectroscopy, and focused beam reflectance measurement–were used to detect sensor faults, mixing faults, and unanticipated chemistry in a system of multicomponent slurries.
Steven H. Crouse +2 more
wiley +1 more source
A defect recognition method based on ITLPP and multi-feature fusion matrix. [PDF]
Lei B, Yi P.
europepmc +1 more source
Combining machine learning and probabilistic statistical learning is a powerful way to discover and design new materials. A variety of machine learning approaches can be used to identify promising candidates for target applications, and causal inference can help identify potential ways to make them a reality.
Jonathan Y. C. Ting, Amanda S. Barnard
wiley +1 more source
This study introduces an affordable machine learning platform for simultaneous dengue and zika detection using fluorine‐doped tin oxide thin films modified with gold nanoparticles and DNA aptamers. Designed for low‐cost, hardware‐limited devices (< $25), the model achieves 95.3% accuracy and uses only 9.4 kB of RAM, demonstrating viability for resource‐
Marina Ribeiro Batistuti Sawazaki +3 more
wiley +1 more source
Deep learning and superoscillatory speckles empowered multimode fiber probe for in situ nano-displacement detection and micro-imaging. [PDF]
Wang L +10 more
europepmc +1 more source
A novel machine learning approach classifies macrophage phenotypes with up to 98% accuracy using only nuclear morphology from DAPI‐stained images. Bypassing traditional surface markers, the method proves robust even on complex textured biomaterial surfaces. It offers a simpler, faster alternative for studying macrophage behavior in various experimental
Oleh Mezhenskyi +5 more
wiley +1 more source
A hybrid machine vision and handcrafted features fusion based approach for fine-grained millet classification. [PDF]
Baisakh B +4 more
europepmc +1 more source
Electrospinning allows the fabrication of fibrous 3D cotton‐wool‐like scaffolds for tissue engineering. Optimizing this process traditionally relies on trial‐and‐error approaches, and artificial intelligence (AI)‐based tools can support it, with the prediction of fiber properties. This work uses machine learning to classify and predict the structure of
Paolo D’Elia +3 more
wiley +1 more source
Age-sensitive urban rail passenger demand forecasting and uncertainty-driven anomaly detection using a hybrid SAINT + CatBoost ensemble. [PDF]
Akçay MT.
europepmc +1 more source
Automated procedural analysis is recognized as one of the major game changers for robotic surgery. Meaning digital analysis needs to replace the manual assessments that set todays standard. Mechanical robotic‐instrument tracking enables the derivation of quantitative kinematic metrics that support behavior‐based workflow segmentation into distinct ...
Kateryna Pirkovets +4 more
wiley +1 more source

