Results 191 to 200 of about 2,841,275 (318)

Real‐time fault detection in multicomponent nuclear‐waste slurries through data fusion of spectroscopic sensors

open access: yesAIChE Journal, EarlyView.
Abstract Three instruments–Raman spectroscopy, attenuated total reflectance–Fourier transform infrared spectroscopy, and focused beam reflectance measurement–were used to detect sensor faults, mixing faults, and unanticipated chemistry in a system of multicomponent slurries.
Steven H. Crouse   +2 more
wiley   +1 more source

What to Make and How to Make It: Combining Machine Learning and Statistical Learning to Design New Materials

open access: yesAdvanced Intelligent Discovery, EarlyView.
Combining machine learning and probabilistic statistical learning is a powerful way to discover and design new materials. A variety of machine learning approaches can be used to identify promising candidates for target applications, and causal inference can help identify potential ways to make them a reality.
Jonathan Y. C. Ting, Amanda S. Barnard
wiley   +1 more source

Machine Learning‐Assisted Infectious Disease Detection in Low‐Income Areas: Toward Rapid Triage of Dengue and Zika Virus Using Open‐Source Hardware

open access: yesAdvanced Intelligent Discovery, EarlyView.
This study introduces an affordable machine learning platform for simultaneous dengue and zika detection using fluorine‐doped tin oxide thin films modified with gold nanoparticles and DNA aptamers. Designed for low‐cost, hardware‐limited devices (< $25), the model achieves 95.3% accuracy and uses only 9.4 kB of RAM, demonstrating viability for resource‐
Marina Ribeiro Batistuti Sawazaki   +3 more
wiley   +1 more source

Macrophage Phenotype Detection Methodology on Textured Surfaces via Nuclear Morphology Using Machine Learning

open access: yesAdvanced Intelligent Discovery, EarlyView.
A novel machine learning approach classifies macrophage phenotypes with up to 98% accuracy using only nuclear morphology from DAPI‐stained images. Bypassing traditional surface markers, the method proves robust even on complex textured biomaterial surfaces. It offers a simpler, faster alternative for studying macrophage behavior in various experimental
Oleh Mezhenskyi   +5 more
wiley   +1 more source

Artificial Intelligence‐Driven Insights into Electrospinning: Machine Learning Models to Predict Cotton‐Wool‐Like Structure of Electrospun Fibers

open access: yesAdvanced Intelligent Discovery, EarlyView.
Electrospinning allows the fabrication of fibrous 3D cotton‐wool‐like scaffolds for tissue engineering. Optimizing this process traditionally relies on trial‐and‐error approaches, and artificial intelligence (AI)‐based tools can support it, with the prediction of fiber properties. This work uses machine learning to classify and predict the structure of
Paolo D’Elia   +3 more
wiley   +1 more source

Automation of Surgical Workflow Recognition: Unveiling the Surgical Instrument Kinematics that Underly Robot‐Assisted Prostatectomy Procedures

open access: yesAdvanced Intelligent Discovery, EarlyView.
Automated procedural analysis is recognized as one of the major game changers for robotic surgery. Meaning digital analysis needs to replace the manual assessments that set todays standard. Mechanical robotic‐instrument tracking enables the derivation of quantitative kinematic metrics that support behavior‐based workflow segmentation into distinct ...
Kateryna Pirkovets   +4 more
wiley   +1 more source

Home - About - Disclaimer - Privacy