Results 141 to 150 of about 2,887,251 (302)

Olaparib synergy screen reveals Exemestane induces replication stress in triple‐negative breast cancer

open access: yesMolecular Oncology, EarlyView.
Screening 166 FDA‐approved anticancer drugs identifies the aromatase inhibitor Exemestane as a synergistic partner of PARP inhibitor Olaparib in BRCA‐proficient triple‐negative breast cancer. Exemestane induces ROS‐mediated replication stress, enhancing DNA damage and apoptosis alongside Olaparib.
Nur Aininie Yusoh   +5 more
wiley   +1 more source

RKIP overexpression reduces lung adenocarcinoma aggressiveness and sensitizes cells to EGFR‐targeted therapies

open access: yesMolecular Oncology, EarlyView.
RKIP, a metastasis suppressor protein, modulates key oncogenic pathways in lung adenocarcinoma. In silico analyses linked low RKIP expression to poor survival. Functional studies revealed RKIP overexpression reduces tumor aggressiveness and enhances sensitivity to EGFR‐targeted therapies, while its loss promotes resistance.
Ana Raquel‐Cunha   +10 more
wiley   +1 more source

PARP inhibitors elicit distinct transcriptional programs in homologous recombination competent castration‐resistant prostate cancer

open access: yesMolecular Oncology, EarlyView.
PARP inhibitors are used to treat a small subset of prostate cancer patients. These studies reveal that PARP1 activity and expression are different between European American and African American prostate cancer tissue samples. Additionally, different PARP inhibitors cause unique and overlapping transcriptional changes, notably, p53 pathway upregulation.
Moriah L. Cunningham   +21 more
wiley   +1 more source

Single‐cell transcriptomics redefines focal neuroendocrine differentiation as a distinct prostate cancer pathology

open access: yesMolecular Oncology, EarlyView.
Single‐cell transcriptomics of prostate cancer patient‐derived xenografts reveals distinct features of neuroendocrine (NE) subtypes. Tumours with focal NE differentiation (NED) share transcriptional programmes with adenocarcinoma, differing from large and small cell neuroendocrine prostate cancer (NEPC). Our work defines the molecular landscape of NEPC,
Rosalia Quezada Urban   +12 more
wiley   +1 more source

Decrypting cancer's spatial code: from single cells to tissue niches

open access: yesMolecular Oncology, EarlyView.
Spatial transcriptomics maps gene activity across tissues, offering powerful insights into how cancer cells are organised, switch states and interact with their surroundings. This review outlines emerging computational, artificial intelligence (AI) and geospatial approaches to define cell states, uncover tumour niches and integrate spatial data with ...
Cenk Celik   +4 more
wiley   +1 more source

Home - About - Disclaimer - Privacy