Results 71 to 80 of about 173,206 (198)

Bioinspired Bromination Enables Extensible, Strain‐Stiffening Resilin Peptide Scaffolds with Tunable Degradation

open access: yesAdvanced Functional Materials, EarlyView.
Bioinspired bromination of a resilin‐derived peptide enables the fabrication of electrospun nanofibrous scaffolds that uniquely combine strain‐stiffening elasticity, proteolytic stability, and antioxidant functionality. These brominated peptide–gelatin hybrids mimic the extensibility of natural elastomers, demonstrating tunable mechanical resilience ...
Elisa Marelli   +6 more
wiley   +1 more source

Integrative Approaches for DNA Sequence‐Controlled Functional Materials

open access: yesAdvanced Functional Materials, EarlyView.
DNA is emerging as a programmable building block for functional materials with applications in biomimicry, biochemical, and mechanical information processing. The integration of simulations, experiments, and machine learning is explored as a means to bridge DNA sequences with macroscopic material properties, highlighting current advances and providing ...
Aaron Gadzekpo   +4 more
wiley   +1 more source

Predicting Atomic Charges in MOFs by Topological Charge Equilibration

open access: yesAdvanced Functional Materials, EarlyView.
An atomic charge prediction method is presented that is able to accurately reproduce ab‐initio‐derived reference charges for a large number of metal–organic frameworks. Based on a topological charge equilibration scheme, static charges that fulfill overall neutrality are quickly generated.
Babak Farhadi Jahromi   +2 more
wiley   +1 more source

PRELIVE: A Framework for Predicting Lipid Nanoparticles In Vivo Efficacy and Reducing Reliance on Animal Testing

open access: yesAdvanced Functional Materials, EarlyView.
PREdicting LNP In Vivo Efficacy (PRELIVE) framework enables the prediction of lipid nanoparticle (LNPs) organ‐specific delivery through dual modeling approaches. Composition‐based models using formulation parameters and protein corona‐based models using biological fingerprints both achieve high predictive accuracy across multiple organs.
Belal I. Hanafy   +3 more
wiley   +1 more source

Trap‐Assisted Transport and Neuromorphic Plasticity in Lead‐Free 2D Perovskites PEA2SnI4

open access: yesAdvanced Functional Materials, EarlyView.
An artificial retina built from lead‐free layered perovskite (PEA)2SnI4 converts light input into a persistent photocurrent and sums successive flashes over time. Micro/nanocrystals integrated on electrodes act as synapse‐like pixels that perform temporal integration directly in hardware. This in‐sensor preprocessing merges detection and computation on
Ofelia Durante   +17 more
wiley   +1 more source

From Mechanics to Electronics: Influence of ALD Interlayers on the Multiaxial Electro‐Mechanical Behavior of Metal–Oxide Bilayers

open access: yesAdvanced Functional Materials, EarlyView.
Ultrathin AlOxHy interlayers between aluminum films and polymer substrates significantly improve electro‐mechanical properties of flexible thin film systems. By precisely controlling interlayer thickness using atomic layer deposition, this study identifies an optimal interlayer thickness of 5–10 nm that enhances ductility and delays cracking.
Johanna Byloff   +9 more
wiley   +1 more source

MagPiezo: A Magnetogenetic Platform for Remote Activation of Endogenous Piezo1 Channels in Endothelial Cells

open access: yesAdvanced Functional Materials, EarlyView.
MagPiezo enables wireless activation of endogenous Piezo1 channels without genetic modification using 19 nm magnetic nanoparticles and low‐intensity magnetic fields. It generates torque forces at the piconewton scale to trigger mechanotransduction in endothelial cells, standing as a novel platform to interrogate and manipulate Piezo1 activity in vitro.
Susel Del Sol‐Fernández   +7 more
wiley   +1 more source

Artificial Intelligence as the Next Visionary in Liquid Crystal Research

open access: yesAdvanced Functional Materials, EarlyView.
The functions of AI in the research laboratory are becoming increasingly sophisticated, allowing the entire process of hypothesis formulation, material design, synthesis, experimental design, and reiterative testing to be automated. In our work, we conceive how the incorporation of AI in the laboratory environment will transform the role and ...
Mert O. Astam   +2 more
wiley   +1 more source

Geometrically Tunable Scaffold‐Free Muscle Bioconstructs for Treating Volumetric Muscle Loss

open access: yesAdvanced Healthcare Materials, EarlyView.
Volumetric muscle loss is associated with traumatic muscle resulting in permanent functional impairment. Mold‐based, scaffold‐free, high‐density muscle tissue bioconstructs are developed in customizable geometric shapes and sizes. The transplanted rectangular solid‐shaped muscle bioconstructs improved muscle force recovery and tissue regeneration in ...
Bugra Ayan   +8 more
wiley   +1 more source

Multivalent Protein Nanorings for Broad and Potent SARS‐CoV‐2 Neutralization

open access: yesAdvanced Healthcare Materials, EarlyView.
A protein‐only, modular multivalent nanoscaffold displaying 20 anchor points, decorated with two different binders (10 of each), targeting the SARS‐CoV‐2 receptor‐binding domain is presented. The construct self‐assembles into stable, biocompatible, homogeneous nanoparticles, exhibit synergistic binding with fM IC50 values. It also detects spike at 9 ng 
Molood Behbahanipour   +11 more
wiley   +1 more source

Home - About - Disclaimer - Privacy