Results 1 to 10 of about 33,821 (99)
The 1/2--Complex Bruno function and the Yoccoz function. A numerical study of the Marmi--Moussa--Yoccoz Conjecture [PDF]
We study the 1/2--Complex Bruno function and we produce an algorithm to evaluate it numerically, giving a characterization of the monoid $\hat{\mathcal{M}}=\mathcal{M}_T\cup \mathcal{M}_S$.
Carletti, Timoteo
core +3 more sources
Understanding complex dynamics by means of an associated Riemann surface [PDF]
We provide an example of how the complex dynamics of a recently introduced model can be understood via a detailed analysis of its associated Riemann surface.
Abenda +37 more
core +3 more sources
Fractional Branes on a Non-compact Orbifold [PDF]
Fractional branes on the non-compact orbifold $\C^3/\Z_5$ are studied. First, the boundary state description of the fractional branes are obtained. The open-string Witten index calculated using these states reproduces the adjacency matrix of the quiver ...
Mukhopadhyay, Subir, Ray, Koushik
core +3 more sources
The impact of Stieltjes' work on continued fractions and orthogonal polynomials
Stieltjes' work on continued fractions and the orthogonal polynomials related to continued fraction expansions is summarized and an attempt is made to describe the influence of Stieltjes' ideas and work in research done after his death, with an emphasis ...
A Pringsheim +121 more
core +2 more sources
Big Bang, Blowup, and Modular Curves: Algebraic Geometry in Cosmology [PDF]
We introduce some algebraic geometric models in cosmology related to the "boundaries" of space-time: Big Bang, Mixmaster Universe, Penrose's crossovers between aeons.
Manin, Yuri I., Marcolli, Matilde
core +6 more sources
Pade approximants of random Stieltjes series
We consider the random continued fraction S(t) := 1/(s_1 + t/(s_2 + t/(s_3 + >...))) where the s_n are independent random variables with the same gamma distribution. For every realisation of the sequence, S(t) defines a Stieltjes function.
Marklof, Jens +2 more
core +1 more source
Generalized Farey trees, transfer Operators and phase transitions
We consider a family of Markov maps on the unit interval, interpolating between the tent map and the Farey map. The latter map is not uniformly expanding.
A.H. Cottrell +19 more
core +1 more source
Growth rate for the expected value of a generalized random Fibonacci sequence [PDF]
A random Fibonacci sequence is defined by the relation g_n = | g_{n-1} +/- g_{n-2} |, where the +/- sign is chosen by tossing a balanced coin for each n. We generalize these sequences to the case when the coin is unbalanced (denoting by p the probability
Benoît Rittaud +7 more
core +4 more sources
The Euler and Springer numbers as moment sequences
I study the sequences of Euler and Springer numbers from the point of view of the classical moment problem.Comment: LaTeX2e, 30 pages. Version 2 contains some small clarifications suggested by a referee. Version 3 contains new footnotes 9 and 10.
Sokal, Alan D.
core +1 more source
Pseudo-factorials, elliptic functions, and continued fractions
This study presents miscellaneous properties of pseudo-factorials, which are numbers whose recurrence relation is a twisted form of that of usual factorials.
Bacher, Roland, Flajolet, Philippe
core +3 more sources

