Results 161 to 170 of about 2,651 (265)

CircTspan3 Promotes Cartilage Development Through ANNEXIN A2‐Mediated Ferroptosis and Apoptosis Inhibition and Exosome‐Mediated Paracrine Signaling

open access: yesAdvanced Science, EarlyView.
This study reveals that XBP1s drives production of circTspan3, a circular RNA that strengthens cartilage by boosting anabolic activity and limiting cell death. Phosphorylated ANXA2 directs circTspan3 into exosomes, enabling paracrine repair. Exosomal circTspan3 expands growth‐plate cartilage and promotes in vivo regeneration, highlighting its promise ...
Yiming Pan   +16 more
wiley   +1 more source

HSP70 Interactome‐Mediated Proteolysis Targeting Chimera (HSP70‐PROTAC) for Ferroptosis‐Driven Cancer Treatment

open access: yesAdvanced Science, EarlyView.
This study reports a novel targeted protein degradation strategy termed “HSP70‐PROTAC” that recruits Hsc70 complex to a target protein for inducing degradation. Among them, GDAz‐3 exhibits effective GPX4 degradation activity via UPS/CMA processes, triggering ferroptosis‐driven anticancer activity in vitro and in vivo.
Jinyun Dong   +15 more
wiley   +1 more source

Loss of SOCS1 in Donor T Cells Exacerbates Intestinal GVHD by Driving a Chemokine‐Dependent Pro‐Inflammatory Immune Microenvironment

open access: yesAdvanced Science, EarlyView.
T cell‐specific Socs1 knockout leads to inflammatory differentiation of CD8+ T cells, prompting the STAT1/2 complex to drive the activation of Ccl5, Ccr5, and Cxcr3, and promoting the skewing of monocytes toward a pro‐inflammatory M1 macrophage lineage.
Zhigui Wu   +14 more
wiley   +1 more source

Palmitoylation‐Mediated Ubiquitination of SRPK1 Regulates Ferroptosis in High‐Fat‐Induced Erectile Dysfunction

open access: yesAdvanced Science, EarlyView.
Elevated exogenous palmitic acid promotes the S‐palmitoylation of SRPK1 in endothelial cells, a dynamic process governed by ZDHHC24 and APT1. This post‐translational modification strengthens the interaction between SRPK1 and the E3 ubiquitin ligase MIB1, thereby facilitating the proteasomal degradation of SRPK1.
Xiao‐Hui Tan   +11 more
wiley   +1 more source

ESICM LIVES 2021: Part 2. [PDF]

open access: yesIntensive Care Med Exp, 2021
europepmc   +1 more source

Magnetically Responsive Piezoelectric Nanocapacitors Enhance Neural Recovery Following Spinal Cord Injury via Targeted Spinal Magnetic Stimulation

open access: yesAdvanced Science, EarlyView.
This study presents a novel “in vivo–in vitro” therapeutic strategy for spinal cord injury by leveraging magnetically responsive piezoelectric nanomaterials. These nanomaterials enable targeted delivery of localized electrical stimulation at the injury site through noninvasive external magnetic actuation, thereby promoting axonal regeneration and ...
Zhihang Xiao   +9 more
wiley   +1 more source

Chloroplast Stress Signals Orchestrate Epidermis‐Specific Remodeling of Mitochondria and ER Under High Light

open access: yesAdvanced Science, EarlyView.
High light exposure triggers an epidermis‐specific remodeling of mitochondria and ER in Arabidopsis, driven by chloroplast‐derived signals. Live‐cell imaging shows that HL rapidly suppresses mitochondrial motility, followed by fusion‐driven elongation and ER cisternal expansion.
Evan R. Angelos   +12 more
wiley   +1 more source

Helix Alignment, Chevrons, and Edge Dislocations in Twist‐Bend Ferroelectric Nematics

open access: yesAdvanced Science, EarlyView.
The recently discovered twist‐bend ferroelectric nematic (NTBF) is the new member of the multiferroic family, representing a fluid with an oblique helicoidal (heliconical) periodic structure of spontaneous electric polarization. The work presents a thorough exploration of the material properties of this phase, how the periodic modulation of ...
Bijaya Basnet   +8 more
wiley   +1 more source

CRISPLD2 Attenuates Intervertebral Disc Degeneration by Suppressing Oxidative Stress‐Induced Ferroptosis through the miR‐548I‐IL17A Axis

open access: yesAdvanced Science, EarlyView.
This study identifies CRISPLD2 as a key protector against IVDD. By regulating ferroptosis through the CRISPLD2–miR‐548I–IL17A axis, CRISPLD2 maintains NPCs homeostasis and reduces oxidative stress. Restoring CRISPLD2 expression effectively alleviates disc degeneration and highlights a promising therapeutic strategy for discogenic low back pain ...
Yangyang Shi   +11 more
wiley   +1 more source

Home - About - Disclaimer - Privacy