Results 211 to 220 of about 3,161,306 (342)
Medtrust - A Decentralized Model for Medical Crowdfunding Based on Smart Contract Using Etherium
Dr.N.Kannaiya Raja +6 more
openalex +1 more source
Deformation and Degradation in 18650 Li‐Ion Cells Under Freeze‐Thaw Cycling
This study investigates the impact of freezethaw degradation of 18650 cells via combined electrochemical and x‐ray imaging studies. High‐resolution synchrotron X‐ray tomography reveals deformation of the jelly‐roll structure and delamination of electrode active materials in cells cycled at 1C and 4C. These structural changes are quantitatively assessed
Xunkai Chen +5 more
wiley +1 more source
DeFiTrustChain: A DeFi-Enabled NFT and Escrow Framework for Secure Automotive Supply Chains in Smart Cities. [PDF]
Kurde A, Singh SK, Alotaibi A.
europepmc +1 more source
Can Regulatory Competition Improve Contracting Institutions? A Russian Tale of Two Reforms [PDF]
Janis Kluge
openalex +1 more source
Dry electrode technology revolutionizes battery manufacturing by eliminating toxic solvents and energy‐intensive drying. This work details two promising techniques: dry spray deposition and polymer fibrillation. How their unique solvent‐free bonding mechanisms create uniform microstructures for thicker, denser electrodes, boosting energy density and ...
Yuhao Liang +7 more
wiley +1 more source
Electroactive Liquid Crystal Elastomers as Soft Actuators
Electroactive liquid crystal elastomers (eLCEs) can be actuated via electromechanical, electrochemical, or electrothermal effects. a) Electromechanical effects include Maxwell stress, electrostriction, and the electroclinic effect. b) Electrochemical effects arise from electrode redox reactions.
Yakui Deng, Min‐Hui Li
wiley +1 more source
Promoting trustworthy file sharing: A community-governed dApp approach. [PDF]
Koa CG, Heng SH, Chin JJ.
europepmc +1 more source
Microplastics from Wearable Bioelectronic Devices: Sources, Risks, and Sustainable Solutions
Bioelectronic devices (e.g., e‐skins) heavily rely on polymers that at the end of their life cycle will generate microplastics. For research, a holistic approach to viewing the full impact of such devices cannot be overlooked. The potential for devices as sources for microplastics is raised, with mitigation strategies surrounding polysaccharide and ...
Conor S. Boland
wiley +1 more source

