Results 151 to 160 of about 4,769 (190)

Learning Highly Dynamic Skills Transition for Quadruped Jumping Through Constrained Space

open access: yesAdvanced Robotics Research, EarlyView.
A quadruped robot masters dynamic jumps through constrained spaces with animal‐inspired moves and intelligent vision control. This hierarchical learning approach combines imitation of biological agility with real‐time trajectory planning. Although legged animals are capable of performing explosive motions while traversing confined spaces, replicating ...
Zeren Luo   +6 more
wiley   +1 more source

Multiobjective Codesign Optimization of a Planar Pneumatic Artificial Muscle‐Based Snake‐Like Robot for Enhanced Agility and Energy Efficiency

open access: yesAdvanced Robotics Research, EarlyView.
A codesign multiobjective optimization framework was developed to enhance the morphology and controller of a snake‐like robot driven by artificial muscles. It improved planar locomotion, agility, and power efficiency. The approach optimized link geometry and controller gains, revealing that shorter muscles near joints and longer linkages maximize ...
Ayla Valles, Mahdi Haghshenas‐Jaryani
wiley   +1 more source

Stable Imitation of Multigait and Bipedal Motions for Quadrupedal Robots Over Uneven Terrains

open access: yesAdvanced Robotics Research, EarlyView.
How are quadrupedal robots empowered to execute complex navigation tasks, including multigait and bipedal motions? Challenges in stability and real‐world adaptation persist, especially with uneven terrains and disturbances. This article presents an imitation learning framework that enhances adaptability and robustness by incorporating long short‐term ...
Erdong Xiao   +3 more
wiley   +1 more source

Energy Consumption Optimization in Trajectory Planning for Fuel Cell Hybrid Uavs Based On HMPC

open access: yesAdvanced Robotics Research, EarlyView.
The endurance limitation of multirotor drones is a critical challenge. This study adopts a hybrid power system of fuel cells and lithium‐ion batteries. Using Nondominated Sorting Genetic Algorithm II, it integrates trajectory planning with energy management optimization.
Xindi Wang   +7 more
wiley   +1 more source

Soft Robotic Snake with Tunable Undulatory Gait for Efficient Underwater Locomotion

open access: yesAdvanced Robotics Research, EarlyView.
This study designs an underwater soft snake robot using 3D‐printed soft actuators, controlled by specific signals to generate sinusoidal undulation. Results show a positive correlation between speed and swing amplitude, with optimal performance at 2/3π phase offset, PLA tail, 1.2 voltage growth rate, and 6s undulation period achieving a maximum speed ...
Huichen Ma, Junjie Zhou, Raye Yeow
wiley   +1 more source

UTact: Underwater Vision‐Based Tactile Sensor with Geometry Reconstruction and Contact Force Estimation

open access: yesAdvanced Robotics Research, EarlyView.
Embedded flexible sensing technologies advance underwater soft robotics, yet most systems still suffer from hysteresis and limited perceptiveness. Instead, vision‐based tactile sensors provide reliable and rapid feedback essential for complex underwater tasks.
Qiyi Zhang   +5 more
wiley   +1 more source

Identifying Physical Interactions in Contact‐Based Robot Manipulation for Learning from Demonstration

open access: yesAdvanced Robotics Research, EarlyView.
Robots can learn manipulation tasks from human demonstrations. This work proposes a versatile method to identify the physical interactions that occur in a demonstration, such as sequences of different contacts and interactions with mechanical constraints.
Alex Harm Gert‐Jan Overbeek   +3 more
wiley   +1 more source

Compliant Pneumatic Feet with Real‐Time Stiffness Adaptation for Humanoid Locomotion

open access: yesAdvanced Robotics Research, EarlyView.
A compliant pneumatic foot with real‐time variable stiffness enables humanoid robots to adapt to changing terrains. Using onboard vision and pressure control, the foot modulates stiffness within each gait cycle, reducing impact forces and improving balance. The design, cast in soft silicone with embedded air chambers and Kevlar wrapping, offers durable,
Irene Frizza   +3 more
wiley   +1 more source

Data‐Driven Bulldozer Blade Control for Autonomous Terrain Leveling

open access: yesAdvanced Robotics Research, EarlyView.
A simulation‐driven framework for autonomous bulldozer leveling is presented, combining high‐fidelity terramechanics simulation with a neural‐network‐based reduced‐order model. Gradient‐based optimization enables efficient, low‐level blade control that balances leveling quality and operation time.
Harry Zhang   +5 more
wiley   +1 more source

Designing High Performance Organic Donor Molecules for Photovoltaics

open access: yesAdvanced Theory and Simulations, EarlyView.
Systematically tuning the fusion pattern and length of the π$\pi$‐bridge, along with adjusting the electron‐withdrawing (EW) strength of the terminal groups in small‐molecule donor A-π-Core-π$\text{A-}\pi \text{-Core-}\pi$‐A architectures, enables predictable modulation of the system's opto‐electronic properties.
Fabian Bauch   +2 more
wiley   +1 more source

Home - About - Disclaimer - Privacy