Results 151 to 160 of about 18,819 (200)
This work presents ARC‐3D, a soft 3D model that recreates how brain support cells, called astrocytes, react to oxidative stress. The system visualizes rapid calcium changes and inflammatory signals, and shows how the drug KDS12025 can protect cells from damage. ARC‐3D offers a simple, reliable way to study early drivers of brain inflammation.
Ju‐Kang Kim +6 more
wiley +1 more source
Novel photo‐clickable triazine‐trione thermosets can be shaped and cured under mild conditions, including room and physiological temperatures. These materials are biocompatible and support osteogenic differentiation of bone marrow–derived mesenchymal stem cells on their surface.
Åshild Johansen +7 more
wiley +1 more source
This study develops a dual‐bioinspired hydrogel, MSA@PGel (macrophage membrane‐coated and salvianolic acid B/5‐aminolevulinic acid co‐loaded liposomes embedded in a polydopamine‐based gel), that integrates macrophage membrane‐mediated active targeting and mussel‐inspired wet adhesion for programmed intervention in oral precancerous lesions.
Xiaoxian Zhao +8 more
wiley +1 more source
A Synovium‐on‐Chip Platform to Study Multicellular Interactions in Arthritis
The Synovium‐on‐Chip comprises a thin microporous PDMS membrane to support co‐culture of fibroblast‐like synoviocytes (FLS), THP‐1‐derived macrophages, and endothelial cells, enabling real‐time analysis of synovial‐vascular interactions. FLS migration through the pores drives endothelial remodeling, while TNF‐α stimulation induces robust inflammatory ...
Laurens R. Spoelstra +8 more
wiley +1 more source
This study evaluates 3D‐printed recombinant spider silk hydrogel eADF4(C16)‐RGD in a rat AV loop model for tissue engineering. Constructs with T17b endothelial progenitor cells showed enhanced vascularization and biodegradation. Results highlight the importance of scaffold design and cellular integration in improving vascular density and overall ...
Claire M. Weinhold +9 more
wiley +1 more source
AngioPlate384 is a 384‐well open‐top platform that automates production of more than 100 miniaturized, perfusable blood vessels embedded in hydrogel and supported by stromal cells. Stromal‐endothelial co‐culture strengthens blood vessel barrier function and yields responses useful for translational planning. Scalable and automation‐ready, it suits drug
Dawn S. Y. Lin +14 more
wiley +1 more source
Over half of cancer patients undergo radiotherapy. Laser ablation enabled the synthesis of immiscible Au‐Fe‐B nanoparticles designed as degradable bimodal radiosensitizers for X‐ray radiotherapy (XRT), boron neutron capture therapy (BNCT), and bimodal imaging for X‐ray computed tomography (CT) and magnetic resonance imaging (MRI). These nanosensitizers
Michael Bissoli +15 more
wiley +1 more source
Porous 3D‐printed titanium implants are made bioactive by integration with a supramolecular peptide‐hyaluronic acid nanofibrillar scaffold, without the addition of exogenous cells or growth factors. Uniform filling of the implant architecture promotes vascularized, spatially homogeneous bone regeneration, significantly enhancing osteogenesis throughout
Noam Rattner +8 more
wiley +1 more source
Oxygen and ROS Delivery for Infected Wound Healing and Future Prospects
Bacterial infection is a major driver of delayed wound healing and postsurgical readmissions; with rising antibiotic resistance, solid peroxide–releasing biomaterials offer sustained delivery of ROS/O2 for antimicrobial control and microenvironmental modulation.
Ayden Watt +7 more
wiley +1 more source
Fast‐acting hydrogel seals bleeding wounds as the illustrated injectable, pH‐responsive network rapidly gels in situ to stop hemorrhage, adhere strongly to wet tissue, and release antibiotics in a controlled, pH‐dependent manner. The material withstands high pressures, shows excellent biocompatibility, and degrades safely, offering a versatile platform
Arvind K. Singh Chandel +5 more
wiley +1 more source

