Results 181 to 190 of about 390,241 (222)
Real-Time Detection of Meningiomas by Image Segmentation: A Very Deep Transfer Learning Convolutional Neural Network Approach. [PDF]
Das D, Sarkar C, Das B.
europepmc +1 more source
Non-Invasive Localization of Epileptogenic Zone in Drug-Resistant Epilepsy Based on Time-Frequency Analysis and VGG Convolutional Neural Network. [PDF]
Liu Y, Wang Y, Wang T.
europepmc +1 more source
CAD-Skin: A Hybrid Convolutional Neural Network-Autoencoder Framework for Precise Detection and Classification of Skin Lesions and Cancer. [PDF]
Khan A+4 more
europepmc +1 more source
Convolutional Neural Networks [PDF]
Artificial neural networks have flourished in recent years in the processing of unstructured data, especially images, text, audio, and speech. Convolutional neural networks (CNNs) work best for such unstructured data. Whenever there is a topology associated with the data, convolutional neural networks do a good job of extracting the important features ...
Ragav Venkatesan, Baoxin Li
+8 more sources
Some of the next articles are maybe not open access.
Related searches:
Related searches:
2021
Machine learning is the study of algorithms and models for computing systems to do tasks based on pattern identification and inference. When it is difficult or infeasible to develop an algorithm to do a particular task, machine learning algorithms can provide an output based on previous training data.
Y. V. R. Nagapawan+2 more
+6 more sources
Machine learning is the study of algorithms and models for computing systems to do tasks based on pattern identification and inference. When it is difficult or infeasible to develop an algorithm to do a particular task, machine learning algorithms can provide an output based on previous training data.
Y. V. R. Nagapawan+2 more
+6 more sources
2021
In this chapter we introduce the convolutional neural network theory including concepts such as convolution operator, kernel, stride, padding and pooling.
Ullo S. L.+7 more
openaire +4 more sources
In this chapter we introduce the convolutional neural network theory including concepts such as convolution operator, kernel, stride, padding and pooling.
Ullo S. L.+7 more
openaire +4 more sources
2023
Dieses Kapitel führt in Convolutional Neural Networks (CNNs) ein und beschreibt, wie diese im Kontext der Sportanalyse verwendet werden können. Insbesondere eignen sich CNNs für das End-to-End-Lernen auf Bildern oder ähnlich strukturierten Daten. Dabei können CNNs Merkmale von Bildern anhand der Pixelwerte effizient lernen und beispielsweise sehr gute ...
Rudolph, Yannick, Brefeld, Ulf
openaire +2 more sources
Dieses Kapitel führt in Convolutional Neural Networks (CNNs) ein und beschreibt, wie diese im Kontext der Sportanalyse verwendet werden können. Insbesondere eignen sich CNNs für das End-to-End-Lernen auf Bildern oder ähnlich strukturierten Daten. Dabei können CNNs Merkmale von Bildern anhand der Pixelwerte effizient lernen und beispielsweise sehr gute ...
Rudolph, Yannick, Brefeld, Ulf
openaire +2 more sources