Results 251 to 260 of about 232,443 (272)
Optimizing Convolutional Neural Networks for Perspiration Rate Sensing in Wearable Devices
Pratyashi Satapathy
openalex +1 more source
Enhanced deep Convolutional Neural Network for SARS-CoV-2 variants classification. [PDF]
Awe OI +4 more
europepmc +1 more source
Accurate prediction of protein-ATP binding sites based on a protein pretrained large language model and a fractional-order convolutional neural network. [PDF]
Guo M, Tu Y, Yu J, Wang Y.
europepmc +1 more source
DSSCC net enhanced skin cancer classification using SMOTE Tomek and optimized convolutional neural network. [PDF]
Javaid MA +6 more
europepmc +1 more source
Some of the next articles are maybe not open access.
Related searches:
Related searches:
2023
Dieses Kapitel führt in Convolutional Neural Networks (CNNs) ein und beschreibt, wie diese im Kontext der Sportanalyse verwendet werden können. Insbesondere eignen sich CNNs für das End-to-End-Lernen auf Bildern oder ähnlich strukturierten Daten. Dabei können CNNs Merkmale von Bildern anhand der Pixelwerte effizient lernen und beispielsweise sehr gute ...
Teik Toe Teoh, Yu Jin Goh
+6 more sources
Dieses Kapitel führt in Convolutional Neural Networks (CNNs) ein und beschreibt, wie diese im Kontext der Sportanalyse verwendet werden können. Insbesondere eignen sich CNNs für das End-to-End-Lernen auf Bildern oder ähnlich strukturierten Daten. Dabei können CNNs Merkmale von Bildern anhand der Pixelwerte effizient lernen und beispielsweise sehr gute ...
Teik Toe Teoh, Yu Jin Goh
+6 more sources
2021
Convolutional neural network (CNN) is a (Agrawal and Roy, IEEE Trans Magn 55:1–7, 2019) class of deep neural network. CNNs are what we call the most representative supervised model in the theory of deep learning is the technique that nowadays (Akinaga and Shima, Proc IEEE 98:2237–2251, 2010) is producing a lot of outstanding results especially in the ...
Y. V. R. Nagapawan +2 more
+5 more sources
Convolutional neural network (CNN) is a (Agrawal and Roy, IEEE Trans Magn 55:1–7, 2019) class of deep neural network. CNNs are what we call the most representative supervised model in the theory of deep learning is the technique that nowadays (Akinaga and Shima, Proc IEEE 98:2237–2251, 2010) is producing a lot of outstanding results especially in the ...
Y. V. R. Nagapawan +2 more
+5 more sources
Differential convolutional neural network
Neural Networks, 2019Convolutional neural networks with strong representation ability of deep structures have ever increasing popularity in many research areas. The main difference of Convolutional Neural Networks with respect to existing similar artificial neural networks is the inclusion of the convolutional part.
Sarıgül M., Ozyildirim B.M., Avci M.
openaire +3 more sources

