Results 41 to 50 of about 1,451,519 (348)
Pointwise Convolutional Neural Networks [PDF]
10 pages, 6 figures, 10 tables.
Binh-Son Hua+2 more
openaire +3 more sources
Convolutional Neural Networks With Dynamic Regularization [PDF]
Regularization is commonly used for alleviating overfitting in machine learning. For convolutional neural networks (CNNs), regularization methods, such as DropBlock and Shake-Shake, have illustrated the improvement in the generalization performance. However, these methods lack a self-adaptive ability throughout training.
Yi Wang+3 more
openaire +4 more sources
Blind Image Quality Assessment Using a Deep Bilinear Convolutional Neural Network [PDF]
We propose a deep bilinear model for blind image quality assessment that works for both synthetically and authentically distorted images. Our model constitutes two streams of deep convolutional neural networks (CNNs), specializing in two distortion ...
Weixia Zhang+4 more
semanticscholar +1 more source
This review discusses the use of Surface‐Enhanced Raman Spectroscopy (SERS) combined with Artificial Intelligence (AI) for detecting antimicrobial resistance (AMR). Various SERS studies used with AI techniques, including machine learning and deep learning, are analyzed for their advantages and limitations.
Zakarya Al‐Shaebi+4 more
wiley +1 more source
It is of great importance to construct a convolutional neural network architecture in the frequency domain to explore the theory of deep learning in the frequency domain.
Jinhua Lin, Lin Ma, Jingxia Cui
doaj +1 more source
Sequential Convolutional Recurrent Neural Networks for Fast Automatic Modulation Classification
A novel and efficient end-to-end learning model for automatic modulation classification is proposed for wireless spectrum monitoring applications, which automatically learns from the time domain in-phase and quadrature data without requiring the design ...
Kaisheng Liao+4 more
doaj +1 more source
ROLLING BEARING FAULT DIAGNOSIS BASED ON FUSION CNN AND PSO-SVM
Aiming at the problem that it is difficult to extract subtle fault features in the process of rolling bearing fault identification,this paper proposes a rolling bearing fault diagnosis method based on fusion convolutional neural network and support ...
WANG YongDing, JIN ZiQi
doaj
Learning Traffic as Images: A Deep Convolutional Neural Network for Large-Scale Transportation Network Speed Prediction [PDF]
This paper proposes a convolutional neural network (CNN)-based method that learns traffic as images and predicts large-scale, network-wide traffic speed with a high accuracy. Spatiotemporal traffic dynamics are converted to images describing the time and
Xiaolei Ma+5 more
semanticscholar +1 more source
A noise robust convolutional neural network for image classification
Convolutional Neural Networks (CNNs) are extensively used for image classification. Noisy images reduce the classification performance of convolutional neural networks and increase the training time of the networks.
Mohammad Momeny+4 more
doaj
In this paper, ultrasound imaging of benign and malignant thyroid nodules to predict the depth of the learning algorithm, built on circulation volume product thyroid ultrasound image neural network forecasting model.
Yinghui Lu, Yi Yang, Wan Chen
doaj +1 more source