Results 131 to 140 of about 525,499 (288)
Visual teach‐and‐repeat (VTR) navigation allows robots to learn and follow routes without building a full metric map. We show that navigation accuracy for VTR can be improved by integrating a topological map with error‐drift correction based on stereo vision.
Fuhai Ling, Ze Huang, Tony J. Prescott
wiley +1 more source
A Fast 4K Video Frame Interpolation Using a Hybrid Task-Based Convolutional Neural Network [PDF]
Ha‐Eun Ahn, Jinwoo Jeong, Je Woo Kim
openalex +1 more source
Data‐Driven Bulldozer Blade Control for Autonomous Terrain Leveling
A simulation‐driven framework for autonomous bulldozer leveling is presented, combining high‐fidelity terramechanics simulation with a neural‐network‐based reduced‐order model. Gradient‐based optimization enables efficient, low‐level blade control that balances leveling quality and operation time.
Harry Zhang +5 more
wiley +1 more source
In this study, we adapt three spatial-temporal graph neural network models to the unique characteristics of crude oil, gold, and silver markets for forecasting purposes.
Parisa Foroutan, Salim Lahmiri
doaj +1 more source
This study highlights the potential of deep learning, particularly Convolutional Neural Networks (CNNs), for predicting the photovoltaic performance of organic solar cells. By leveraging 2D images representing donor/acceptor molecular pairs, the model accurately estimates key performance indicators proving that this image‐based approach offers a fast ...
Khoukha Khoussa +2 more
wiley +1 more source
Automated plankton image analysis using convolutional neural networks
Jessica Y. Luo +6 more
openalex +2 more sources
Colorimetric Characterization of Color Image Sensors Based on Convolutional Neural Network Modeling [PDF]
Po-Tong Wang, J. Chou, Chiu Wang Tseng
openalex +1 more source
Using the convolutional neural network model VDLIN, Co7 is identified as a promising therapeutic candidate. Co7 demonstrates distinct advantages over MCB by effectively balancing anti‐inflammatory and immune‐stimulatory functions, making it a potential novel approach for immune modulation.
Xuefei Guo +6 more
wiley +1 more source
Multi‐Site Transfer Classification of Major Depressive Disorder: An fMRI Study in 3335 Subjects
The study proposes graph convolution network with sparse pooling to learn the hierarchical features of brain graph for MDD classification. Experiment is done on multi‐site fMRI samples (3335 subjects, the largest functional dataset of MDD to date) and transfer learning is applied, achieving an average accuracy of 70.14%.
Jianpo Su +14 more
wiley +1 more source

