Results 171 to 180 of about 887,990 (315)

Immune Predictors of Radiotherapy Outcomes in Cervical Cancer

open access: yesAdvanced Science, EarlyView.
This study reveals dynamic immune remodeling in cervical cancer following radiotherapy. Single‐cell analysis identifies the C3/C3AR1 axis as a central mediator of epithelial–myeloid crosstalk, whose inhibition reduces treatment efficacy in mice. Guided by these insights, the eight‐feature machine‐learning model: Cervical Cancer Radiotherapy Immune ...
Linghao Wang   +8 more
wiley   +1 more source

CHB‐Induced Immune Zonation Chaos Elicited LXRα‐mediated Lipid Metabolism Disorders in Kupffer Cells to Induce Cancer Stem Cell Formation

open access: yesAdvanced Science, EarlyView.
By profiling the spatiotemporal hepatic landscape of CHB mouse models, the originally peri‐portal localized KCs migrated to the peri‐central in a CXCL9‐CXCR3‐dependent manner, facilitating their interaction with HBV+ hepatocytes. The interaction promoted LMD in KCs through ASGR1‐induced LXRα degradation, which, in turn, induced CSC formation via Stat3 ...
Jingqi Shi   +18 more
wiley   +1 more source

Single‐Nucleus Multi‐Omics Reveals Hypoxia‐Driven Angiogenic Programs and Their Epigenetic Control in Sinonasal Squamous Cell Carcinoma

open access: yesAdvanced Science, EarlyView.
Single‐nucleus multi‐omics profiling of sinonasal squamous cell carcinoma unveils a hypoxia‐driven angiogenic axis. A specific hypoxic tumor subpopulation orchestrates endothelial tip cell differentiation via epigenetically regulated ADM and VEGFA secretion.
Chaelin You   +12 more
wiley   +1 more source

PARPi Combining Nanoparticle LIN28B siRNA for the Management of Malignant Ascites

open access: yesAdvanced Science, EarlyView.
This study demonstrates that co‐inhibition of LIN28B and PARP using siLin28b/DSSP@lip‐PEG‐FA nanoparticles in combination with the PARP inhibitor BMN673 effectively suppresses the accumulation of malignant ascites associated with advanced cancers.
Yan Fang   +13 more
wiley   +1 more source

Precision Editing of NLRS Improves Effector Recognition for Enhanced Disease Resistance

open access: yesAdvanced Science, EarlyView.
Precision engineering of plant NLR immune receptors enables rational design of enhanced pathogen resistance through mismatched pairing, domain swapping, and targeted mutagenesis. These approaches achieve multi‐fold expansion in recognition breadth while minimizing autoimmunity risks and fitness penalties.
Vinit Kumar   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy