Results 191 to 200 of about 142,232 (267)

Programmable In‐Situ Interactions Between Resins and Photopolymerized Structures for Seamlessly Integrated Optical Manufacturing of Microlenses

open access: yesAdvanced Functional Materials, EarlyView.
This study presents a dynamic interaction between liquid resins and photopolymerized structures enabled by an in situ light‐writing setup. By controlling a three‐phase interface through localized photopolymerization, which provides physical confinement for the remaining uncured resin regions, the approach establishes a programmable pathway that ...
Kibeom Kim   +3 more
wiley   +1 more source

Self‐Feeding of Engineered Tissues via Controlled Glucose Release Facilitates Survival and Vascularization of Living Implants

open access: yesAdvanced Functional Materials, EarlyView.
ABSTRACT Engineering living matter has great clinical potential to deliver functional replacement organs. However, clinical translation remains hampered by the current inability to maintain viability of clinically relevant‐sized constructs. During the pre‐vascular phase, implants rely on nutrient diffusion for survival, which is insufficient at ...
Melvin Gurian   +5 more
wiley   +1 more source

Gold Nanoclusters as Dual Agents for Engineering Tumor Vascular Leakiness and Performing Photothermal Therapy

open access: yesAdvanced Functional Materials, EarlyView.
Many cancer nanotherapeutics, while potent, suffer from the inability to escape from the tumor vasculature, especially in the absence of endothelial permeability. In this work, ultrasmall gold nanoclusters could engineer nanomaterials induced endothelial leakiness (NanoEL) and harness strong NIR induced photothermal characteristics to suppress tumor ...
Nengyi Ni   +8 more
wiley   +1 more source

Poly(lactic‐co‐glycolic acid) Nanoparticles for IL‐12 Self‐Amplifying RNA Delivery in Glioblastoma Models

open access: yesAdvanced Functional Materials, EarlyView.
xxxx. ABSTRACT Glioblastoma (GBM) remains one of the most lethal brain cancers, with median survival rarely exceeding 15 months after diagnosis. Interleukin‐12 (IL‐12) is a potent immunostimulatory cytokine capable of reshaping the tumor microenvironment (TME), yet its clinical translation is hindered by systemic toxicity and short half‐life. RNA‐based
Fatima Hameedat   +11 more
wiley   +1 more source

Tissue Engineered Human Elastic Cartilage From Primary Auricular Chondrocytes for Ear Reconstruction

open access: yesAdvanced Functional Materials, EarlyView.
Despite over three decades of research, no tissue‐engineered solution for auricular reconstruction in microtia patients has reached clinical translation. The key challenge lies in generating functional elastic cartilage ex vivo. Here, we integrate synergistic cell‐biomaterial strategies to engineer auricular grafts with mechanical and histological ...
Philipp Fisch   +13 more
wiley   +1 more source

Translational Considerations for Injectable Biomaterials and Bioscaffolds to Repair and Regenerate Brain Tissue

open access: yesAdvanced Healthcare Materials, EarlyView.
The repair and regeneration of brain tissue faces both biological and technical challenges. Injectable bioscaffolds offer new opportunities to stimulate tissue regrowth in the brain by recruiting neural stem cells. Here, the translational issues are reviewed that need to be address to advance this promising new therapeutic approach from the bench to ...
Michel Modo, Alena Kisel
wiley   +1 more source

Modular Platform for Rapidly Investigating Long‐Distance Propagation of Human Neural Network Activity

open access: yesAdvanced Healthcare Materials, EarlyView.
This study presents the first human neural organoid culture model capable of rapidly exhibiting long‐distance neural network propagation, thus delivering a system to experimentally investigate large‐scale communication during normal and diseased states.
Megh Dipak Patel   +6 more
wiley   +1 more source

Bioprinting Organs—Science or Fiction?—A Review From Students to Students

open access: yesAdvanced Healthcare Materials, EarlyView.
Bioprinting artificial organs has the potential to revolutionize the medical field. This is a comprehensive review of the bioprinting workflow delving into the latest advancements in bioinks, materials and bioprinting techniques, exploring the critical stages of tissue maturation and functionality.
Nicoletta Murenu   +18 more
wiley   +1 more source

Home - About - Disclaimer - Privacy