Results 101 to 110 of about 236,117 (266)
Microbial synthesis of nanomaterials (NMs) is eco‐friendly, but the screening of microorganisms is limited by inefficient traditional methods (currently only involving∽400 microorganisms/90 NMs). We propose AI framework MicrobeDiscover, integrating a knowledge graph of microbe‐NM interactions.
Ludi Wang +12 more
wiley +1 more source
This review comprehensively summarizes the atomic defects in TMDs for their applications in sustainable energy storage devices, along with the latest progress in ML methodologies for high‐throughput TEM data analysis, offering insights on how ML‐empowered microscopy facilitates bridging structure–property correlation and inspires knowledge for precise ...
Zheng Luo +6 more
wiley +1 more source
ABSTRACT This paper examines the determinants of generative AI (GenAI) knowledge and usage among agricultural extension professionals. Drawing on survey data from agricultural extension personnel in Tennessee, we employ regression analyses and latent Dirichlet allocation (LDA) for topic modeling of open‐ended responses to study the knowledge and usage ...
Abdelaziz Lawani +3 more
wiley +1 more source
Large language models are transforming microbiome research by enabling advanced sequence profiling, functional prediction, and association mining across complex datasets. They automate microbial classification and disease‐state recognition, improving cross‐study integration and clinical diagnostics.
Jieqi Xing +4 more
wiley +1 more source
Deep Learning‐Assisted Design of Mechanical Metamaterials
This review examines the role of data‐driven deep learning methodologies in advancing mechanical metamaterial design, focusing on the specific methodologies, applications, challenges, and outlooks of this field. Mechanical metamaterials (MMs), characterized by their extraordinary mechanical behaviors derived from architected microstructures, have ...
Zisheng Zong +5 more
wiley +1 more source
Large Language Model in Materials Science: Roles, Challenges, and Strategic Outlook
Large language models (LLMs) are reshaping materials science. Acting as Oracle, Surrogate, Quant, and Arbiter, they now extract knowledge, predict properties, gauge risk, and steer decisions within a traceable loop. Overcoming data heterogeneity, hallucinations, and poor interpretability demands domain‐adapted models, cross‐modal data standards, and ...
Jinglan Zhang +4 more
wiley +1 more source
This perspective highlights how knowledge‐guided artificial intelligence can address key challenges in manufacturing inverse design, including high‐dimensional search spaces, limited data, and process constraints. It focused on three complementary pillars—expert‐guided problem definition, physics‐informed machine learning, and large language model ...
Hugon Lee +3 more
wiley +1 more source
Chat computational fluid dynamics (CFD) introduces an large language model (LLM)‐driven agent that automates OpenFOAM simulations end‐to‐end, attaining 82.1% execution success and 68.12% physical fidelity across 315 benchmarks—far surpassing prior systems.
E Fan +8 more
wiley +1 more source

