Results 211 to 220 of about 69,760 (269)

Short time coupled fractional fourier transform and the uncertainty principle

open access: closedFractional Calculus and Applied Analysis, 2021
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
Kamalakkannan, Ramanathan   +2 more
semanticscholar   +4 more sources

On the Extension and Sampling Theorem for the Coupled Fractional Fourier Transform

open access: closed2023 International Conference on Sampling Theory and Applications (SampTA), 2023
The fractional Fourier transform, denoted by Fθ, which is a generalization of the Fourier transform, depends on a parameter 0 ≤ θ ≤ π/2, so that when θ = 0, F0 is the identity transformation and when θ = π/2, Fπ/2 is the standard Fourier transform.
Ahmed I. Zayed
semanticscholar   +3 more sources

On the extension of the coupled fractional Fourier transform and its properties

open access: closedIntegral Transforms and Special Functions, 2021
The coupled fractional Fourier transform is a two-dimensional fractional Fourier transform that depends on two angles that are coupled in such a way that the transform parameters are and It generalizes the two-dimensional Fourier transform and it serves ...
R. Kamalakkannan, R. Roopkumar, A. Zayed
semanticscholar   +3 more sources

Uncertainty principles for windowed coupled fractional Fourier transform

open access: closedMathematical Methods in the Applied Sciences
The windowed coupled fractional Fourier transform was recently proposed in the literature. It may be considered as a generalized version of the windowed fractional Fourier transform. In this study, we first present various basic properties of the windowed coupled fractional Fourier transform including linearity, shifting, modulation, parity ...
Mawardi Bahri   +3 more
semanticscholar   +4 more sources

Boundedness of pseudo-differential operators via coupled fractional Fourier transform

open access: closedApplicable Analysis
In this article, we obtained some fruitful results of the coupled fractional Fourier transform and its kernel. We defined pseudo-differential operators related to coupled fractional Fourier transform on Schwartz spaces and it is shown that their ...
Shraban Das, Kanailal Mahato, Sourav Das
semanticscholar   +3 more sources

Pseudo-differential operators associated with the coupled fractional Fourier transform and its application

open access: closedJournal of Pseudo-Differential Operators and Applications
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
Das, Shraban, Mahato, Kanailal
semanticscholar   +4 more sources

A robust and efficient SAR ATR algorithm using a hybrid model of fractional fourier transform and pulse coupled neural network

open access: closed2014 IEEE International Microwave and RF Conference (IMaRC), 2014
A hybrid framework consisting of Fractional Fourier Transform (FrFT) and Pulse coupled Neural network (PCNN) is proposed in this paper for highly accurate and orientation, position & scale invariant synthetic aperture radar (SAR) automatic target recognition (ATR).
Santu Sardar, Amit K. Mishra
semanticscholar   +3 more sources

Home - About - Disclaimer - Privacy