Results 161 to 170 of about 910,963 (262)
Combining machine learning and probabilistic statistical learning is a powerful way to discover and design new materials. A variety of machine learning approaches can be used to identify promising candidates for target applications, and causal inference can help identify potential ways to make them a reality.
Jonathan Y. C. Ting, Amanda S. Barnard
wiley +1 more source
A sequential deep learning framework is developed to model surface roughness progression in multi‐stage microneedle fabrication. Using real‐world experimental data from 3D printing, molding, and casting stages, an long short‐term memory‐based recurrent neural network captures the cumulative influence of geometric parameters and intermediate outputs ...
Abdollah Ahmadpour +5 more
wiley +1 more source
Bayesian optimization enabled the design of PA56 system with just 8 wt% additives, achieving limiting oxygen index 30.5%, tensile strength 80.9 MPa, and UL‐94 V‐0 rating. Without prior knowledge, the algorithm uncovered synergistic effects between aluminum diethyl‐phosphinate and nanoclay.
Burcu Ozdemir +4 more
wiley +1 more source
To integrate surface analysis into materials discovery workflows, Gaussian process regression is used to accurately predict surface compositions from rapidly acquired volume composition data (obtained by energy‐dispersive X‐ray spectroscopy), drastically reducing the number of required surface measurements on thin‐film materials libraries.
Felix Thelen +2 more
wiley +1 more source
This work presents a novel generative artificial intelligence (AI) framework for inverse alloy design through operations (optimization and diffusion) within learned compact latent space from variational autoencoder (VAE). The proposed work addresses challenges of limited data, nonuniqueness solutions, and high‐dimensional spaces.
Mohammad Abu‐Mualla +4 more
wiley +1 more source
Deep Learning‐Assisted Coherent Raman Scattering Microscopy
The analytical capabilities of coherent Raman scattering microscopy are augmented through deep learning integration. This synergistic paradigm improves fundamental performance via denoising, deconvolution, and hyperspectral unmixing. Concurrently, it enhances downstream image analysis including subcellular localization, virtual staining, and clinical ...
Jianlin Liu +4 more
wiley +1 more source
Reconstructing Spatial Localization Error Maps via Physics-Informed Tensor Completion for Passive Sensor Systems. [PDF]
Zhang Z, Huang Z, Wang C, Jiang Q.
europepmc +1 more source
This work introduces a novel framework for identifying non‐small cell lung cancer biomarkers from hundreds of volatile organic compounds in breath, analyzed via gas chromatography‐mass spectrometry. This method integrates generative data augmentation and multi‐view feature selection, providing a stable and accurate solution for biomarker discovery in ...
Guancheng Ren +10 more
wiley +1 more source
Advanced Experiment Design Strategies for Drug Development
Wang et al. analyze 592 drug development studies published between 2020 and 2024 that applied design of experiments methodologies. The review surveys both classical and emerging approaches—including Bayesian optimization and active learning—and identifies a critical gap between advanced experimental strategies and their practical adoption in ...
Fanjin Wang +3 more
wiley +1 more source

