Results 171 to 180 of about 2,877,467 (378)

Return and Volatility Spillovers Among Major Cotton Markets

open access: yesAgribusiness, EarlyView.
ABSTRACT This study explores return and volatility transmission among major cotton markets. Several events have disrupted cotton supply and demand in recent years, leading to heightened price volatility and significant shifts in market interconnections.
Susmitha Kalli   +3 more
wiley   +1 more source

Real‐time fault detection in multicomponent nuclear‐waste slurries through data fusion of spectroscopic sensors

open access: yesAIChE Journal, EarlyView.
Abstract Three instruments–Raman spectroscopy, attenuated total reflectance–Fourier transform infrared spectroscopy, and focused beam reflectance measurement–were used to detect sensor faults, mixing faults, and unanticipated chemistry in a system of multicomponent slurries.
Steven H. Crouse   +2 more
wiley   +1 more source

Domain‐Aware Implicit Network for Arbitrary‐Scale Remote Sensing Image Super‐Resolution

open access: yesAdvanced Intelligent Discovery, EarlyView.
Although existing arbitrary‐scale image super‐resolution methods are flexible to reconstruct images with arbitrary scales, the characteristic of training distribution is neglected that there exists domain shift between samples of various scales. In this work, a Domain‐Aware Implicit Network (DAIN) is proposed to handle it from the perspective of domain
Xiaoxuan Ren   +6 more
wiley   +1 more source

Analysis of modified SMI method for adaptive array weight control [PDF]

open access: yes
An adaptive array is applied to the problem of receiving a desired signal in the presence of weak interference signals which need to be suppressed. A modification, suggested by Gupta, of the sample matrix inversion (SMI) algorithm controls the array ...
Dilsavor, R. L., Moses, R. L.
core   +1 more source

What to Make and How to Make It: Combining Machine Learning and Statistical Learning to Design New Materials

open access: yesAdvanced Intelligent Discovery, EarlyView.
Combining machine learning and probabilistic statistical learning is a powerful way to discover and design new materials. A variety of machine learning approaches can be used to identify promising candidates for target applications, and causal inference can help identify potential ways to make them a reality.
Jonathan Y. C. Ting, Amanda S. Barnard
wiley   +1 more source

Home - About - Disclaimer - Privacy