Results 181 to 190 of about 2,877,467 (378)

Estimating High Dimensional Covariance Matrices and its Applications [PDF]

open access: yes
Estimating covariance matrices is an important part of portfolio selection, risk management, and asset pricing. This paper reviews the recent development in estimating high dimensional covariance matrices, where the number of variables can be greater ...
Jushan Bai, Shuzhong Shi
core  

Deep Learning Prediction of Surface Roughness in Multi‐Stage Microneedle Fabrication: A Long Short‐Term Memory‐Recurrent Neural Network Approach

open access: yesAdvanced Intelligent Discovery, EarlyView.
A sequential deep learning framework is developed to model surface roughness progression in multi‐stage microneedle fabrication. Using real‐world experimental data from 3D printing, molding, and casting stages, an long short‐term memory‐based recurrent neural network captures the cumulative influence of geometric parameters and intermediate outputs ...
Abdollah Ahmadpour   +5 more
wiley   +1 more source

Parallel Gaussian Process Regression with Low-Rank Covariance Matrix Approximations [PDF]

open access: green, 2014
Jie Chen   +5 more
openalex   +1 more source

Bayesian Optimization Guiding the Experimental Mapping of the Pareto Front of Mechanical and Flame‐Retardant Properties in Polyamide Nanocomposites

open access: yesAdvanced Intelligent Discovery, EarlyView.
Bayesian optimization enabled the design of PA56 system with just 8 wt% additives, achieving limiting oxygen index 30.5%, tensile strength 80.9 MPa, and UL‐94 V‐0 rating. Without prior knowledge, the algorithm uncovered synergistic effects between aluminum diethyl‐phosphinate and nanoclay.
Burcu Ozdemir   +4 more
wiley   +1 more source

Accelerating Surface Composition Characterization of Thin‐Film Materials Libraries Using Multi‐Output Gaussian Process Regression

open access: yesAdvanced Intelligent Discovery, EarlyView.
To integrate surface analysis into materials discovery workflows, Gaussian process regression is used to accurately predict surface compositions from rapidly acquired volume composition data (obtained by energy‐dispersive X‐ray spectroscopy), drastically reducing the number of required surface measurements on thin‐film materials libraries.
Felix Thelen   +2 more
wiley   +1 more source

Home - About - Disclaimer - Privacy