Results 151 to 160 of about 154,545 (256)

Dual‐Ligand Metal‐Organic Frameworks via In Situ Amidoxime Engineering for Selective Ion Separation

open access: yesAdvanced Functional Materials, EarlyView.
Inspired by microbial ion‐trapping mechanisms, a mild and universal strategy is developed to construct highly porous amidoxime‐functionalized MOFs. DFT calculations and molecular force measurements reveal that the dual‐ligand amidoxime configuration significantly strengthens Ga(III) affinity.
Zhifang Lv   +9 more
wiley   +1 more source

Pixelation‐Free, Monolithic Iontronic Pressure Sensors Enabling Large‐Area Simultaneous Pressure and Position Recognition via Machine Learning

open access: yesAdvanced Functional Materials, EarlyView.
A pixelation‐free, monolithic iontronic pressure sensor enables simultaneous pressure and position sensing over large areas. AC‐driven ion release generates spatially varying impedance pathways depending on the pressure. Machine learning algorithms effectively decouple overlapping pressure–position signals from the multichannel outputs, achieving high ...
Juhui Kim   +10 more
wiley   +1 more source

Carbon Contacts to Proteins Enable Robust, Biocompatible Electronic Junctions with Near‐Activation‐less Conduction Down to 10 K

open access: yesAdvanced Functional Materials, EarlyView.
A robust solid‐state protein junction with a semi‐transparent eC/Au electrode allows photoexcitation of the bacterio‐rhodopsin, bR layer, to isomerize the bR retinal. The resulting photo‐response shows the protein is functional in the solid‐state junction.
Shailendra K. Saxena   +5 more
wiley   +1 more source

Dual‐Site Ru Single‐Atoms and RuP Nanoclusters on N, P, and B Co‐Doped Porous Carbon for Efficient Alkaline HER and AEM Water Electrolysis

open access: yesAdvanced Functional Materials, EarlyView.
Ru single atoms and RuP nanoclusters are co‐anchored in N, P, and B co‐doped porous carbon nanospheres via in situ carbonization/phosphidation of a boronate polymer precursor. RuP activates water, while nearby Ru single atoms accelerate H2 formation through H* transfer. The catalyst delivers low overpotential and high durability in alkaline HER and AEM
Xiaohong Wang   +13 more
wiley   +1 more source

Artificial Intelligence as the Next Visionary in Liquid Crystal Research

open access: yesAdvanced Functional Materials, EarlyView.
The functions of AI in the research laboratory are becoming increasingly sophisticated, allowing the entire process of hypothesis formulation, material design, synthesis, experimental design, and reiterative testing to be automated. In our work, we conceive how the incorporation of AI in the laboratory environment will transform the role and ...
Mert O. Astam   +2 more
wiley   +1 more source

Home - About - Disclaimer - Privacy