Results 51 to 60 of about 23,334 (203)
Combination of open covers with π1$\pi _1$‐constraints
Abstract Let G$G$ be a group and let F$\mathcal {F}$ be a family of subgroups of G$G$. The generalised Lusternik–Schnirelmann category catF(G)$\operatorname{cat}_\mathcal {F}(G)$ is the minimal cardinality of covers of BG$BG$ by open subsets with fundamental group in F$\mathcal {F}$.
Pietro Capovilla, Kevin Li, Clara Löh
wiley +1 more source
Tamari Lattices for Parabolic Quotients of the Symmetric Group [PDF]
We present a generalization of the Tamari lattice to parabolic quotients of the symmetric group. More precisely, we generalize the notions of 231-avoiding permutations, noncrossing set partitions, and nonnesting set partitions to parabolic quotients, and
Henri Mühle, Nathan Williams
doaj +1 more source
Special matchings in Coxeter groups
Special matchings are purely combinatorial objects associated with a partially ordered set, which have applications in Coxeter group theory. We provide an explicit characterization and a complete classification of all special matchings of any lower ...
Caselli, Fabrizio, Marietti, Mario
core +1 more source
W‐algebras, Gaussian free fields, and g$\mathfrak {g}$‐Dotsenko–Fateev integrals
Abstract Based on the intrinsic connection between Gaussian free fields and the Heisenberg vertex algebra, we study some aspects of the correspondence between probability theory and W$W$‐algebras. This is first achieved by providing a construction of the W$W$‐algebra associated to a complex simple Lie algebra g$\mathfrak {g}$ by means of Gaussian free ...
Baptiste Cerclé
wiley +1 more source
Floer theory for the variation operator of an isolated singularity
Abstract The variation operator in singularity theory maps relative homology cycles to compact cycles in the Milnor fiber using the monodromy. We construct its symplectic analog for an isolated singularity. We define the monodromy Lagrangian Floer cohomology, which provides categorifications of the standard theorems on the variation operator and the ...
Hanwool Bae +3 more
wiley +1 more source
Lower algebraic K-theory of certain reflection groups
For a finite volume geodesic polyhedron P in hyperbolic 3-space, with the property that all interior angles between incident faces are integral submultiples of Pi, there is a naturally associated Coxeter group generated by reflections in the faces ...
Bass +13 more
core +1 more source
Equivariant Hilbert and Ehrhart series under translative group actions
Abstract We study representations of finite groups on Stanley–Reisner rings of simplicial complexes and on lattice points in lattice polytopes. The framework of translative group actions allows us to use the theory of proper colorings of simplicial complexes without requiring an explicit coloring to be given.
Alessio D'Alì, Emanuele Delucchi
wiley +1 more source
On the Topology of the Cambrian Semilattices [PDF]
For an arbitrary Coxeter group $W$, David Speyer and Nathan Reading defined Cambrian semilattices $C_{\gamma}$ as certain sub-semilattices of the weak order on $W$.
Myrto Kallipoliti, Henri Mühle
doaj +1 more source
Virtually splitting the map from Aut(G) to Out(G)
We give an elementary criterion on a group G for the map from Aut(G) to Out(G) to split virtually. This criterion applies to many residually finite CAT(0) groups and hyperbolic groups, and in particular to all finitely generated Coxeter groups.
Carette, Mathieu
core +1 more source
On Bipartite Biregular Large Graphs Derived From Difference Sets
ABSTRACT A bipartite graph G = ( V , E ) with V = V 1 ∪ V 2 is biregular if all the vertices of each stable set, V 1 and V 2, have the same degree, r and s, respectively. This paper studies difference sets derived from both Abelian and non‐Abelian groups.
Gabriela Araujo‐Pardo +3 more
wiley +1 more source

