Results 191 to 200 of about 58,593 (304)

Photoswitchable Conductive Metal–Organic Frameworks

open access: yesAdvanced Functional Materials, EarlyView.
A conductive material where the conductivity can be modulated remotely by irradiation with light is presented. It is based on films of conductive metal–organic framework type Cu3(HHTP)2 with embedded photochromic molecules such as azobenzene, diarylethene, spiropyran, and hexaarylbiimidazole in the pores.
Yidong Liu   +5 more
wiley   +1 more source

Dual‐Mode Film Based on Highly Scattering Nanofibers and Upcycled Chips‐Bags for Year‐Round Thermal Management

open access: yesAdvanced Functional Materials, EarlyView.
Intelligent radiative cooling devices, adaptable to various weather conditions, have the potential for year‐round energy savings. This study introduces a sustainable dual‐mode film made from polycaprolactone nanofibers and upcycled chip bags for effective thermal management.
Qimeng Song   +4 more
wiley   +1 more source

Understanding and Optimizing Li Substitution in P2‐Type Sodium Layered Oxides for Sodium‐Ion Batteries

open access: yesAdvanced Functional Materials, EarlyView.
This work explores Li‐substituted P2 layered oxides for Na‐ion batteries by crystallographic and electrochemical studies. The effect of lithium on superstructure orderings, on phase transitions during synthesis and electrochemical cycling and on the interplay of O‐ versus TM‐redox is revealed via various advanced techniques, including semi‐simultaneous 
Mingfeng Xu   +5 more
wiley   +1 more source

NanoMOF‐Based Multilevel Anti‐Counterfeiting by a Combination of Visible and Invisible Photoluminescence and Conductivity

open access: yesAdvanced Functional Materials, EarlyView.
This study presents novel anti‐counterfeiting tags with multilevel security features that utilize additional disguise features. They combine luminescent nanosized Ln‐MOFs with conductive polymers to multifunctional mixed‐matrix membranes and powder composites. The materials exhibit visible/NIR emission and matrix‐based conductivity even as black bodies.
Moritz Maxeiner   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy