Results 191 to 200 of about 354,762 (311)
Eco-friendly and efficient Friedel-Crafts acylation of activated arenes catalyzed with low-loaded ferric chloride in propylene carbonate as the solvent: scope and mechanistic insights. [PDF]
Cherif SE +5 more
europepmc +1 more source
PTFE nanoparticle–anchored rGO (rGO@PTFE) for scalable solvent‐free fabrication of ultra‐thick, high‐density cathodes, achieving high conductivity (9.55 S cm−1), lithium transference (0.73), and improved wettability, is developed. The resulting cathode delivers 15.2 mAh cm−2 areal and 563 mAh cm−3 volumetric capacities, with full cells exhibiting 637 ...
Juhee Yoon +7 more
wiley +1 more source
A dual‐percolative planar‐heterojunction photoactive architecture enables intrinsically stretchable organic photovoltaics that combine high photovoltaic efficiency with enhanced mechanical robustness. Abstract Intrinsically stretchable organic solar cells (IS‐OSCs) are promising candidates for wearable power sources due to their ability to deform in ...
Jin‐Woo Lee +8 more
wiley +1 more source
A multilayer‐stackable carbon nanotuber (CNT) scaffold‐based piezoelectric nanogenerator (CPENG) with domino‐patterned CNT pillars presents high, stable output (12.3 V, size of 1 cm × 1 cm) over 2000 cycles, operates across a wide temperature range, and efficiently converts energy from real‐life stimuli through optimized CNT length, layer stacking, and
Kwangjun Kim +3 more
wiley +1 more source
Proteins, Processing, and Properties of Adhesive Fluid Condensates Purified from Mussels
Mussels exhibit an unmatched proficiency for adhering to wet surfaces in salty environments—a remarkable ability that could inspire new biomedical and technical glues. The fluid protein condensates used to form the underwater mussel glue are extracted, reconstituted and characterized with advanced spectroscopy and nanomechanical analysis, revealing ...
Mathieu D. Rivard +8 more
wiley +1 more source
Cold Quad‐Modal Nanocomplex for Precise and Quantitative In Vivo Stem Cell Tracking
Multimodal albumin–bismuth sulfide–superparamagnetic iron oxide (ABS) nanocomplexes are developed for stem cell tracking across four different imaging modalities: MRI, MPI, MSOT, and CT. Combining its flexibility with high sensitivity, this quad‐modal imaging agent enables a robust quantification of ABS‐labeled stem cells in vivo.
Ali Shakeri‐Zadeh +4 more
wiley +1 more source

