Results 281 to 290 of about 181,490 (337)

Injectable Dual‐Network Hydrogel System for Osteochondral Repair Combining Immunomodulation, Mechanical Adaptability, and Enhanced Tissue Integration

open access: yesAdvanced Functional Materials, EarlyView.
A UV‐triggered injectable dual‐network hydrogel is reported as the first application of bletilla striata polysaccharide (BSP) in osteochondral repair. By integrating methacrylamide‐modified BSP and nitrobenzaldehyde‐functionalized hyaluronic acid, the system achieves immunomodulation, mechanical reinforcement, and dynamic tissue adhesion, thereby ...
Jiaming Cui   +10 more
wiley   +1 more source

Conductance‐Dependent Photoresponse in a Dynamic SrTiO3 Memristor for Biorealistic Computing

open access: yesAdvanced Functional Materials, EarlyView.
A nanoscale SrTiO3 memristor is shown to exhibit dynamic synaptic behavior through the interaction of local electrical and global optical signals. Its photoresponse depends quantitatively on the conductance state, which evolves and decays over tunable timescales, enabling ultralow‐power, biorealistic learning mechanisms for advanced in‐memory and ...
Christoph Weilenmann   +8 more
wiley   +1 more source

Deterministic hBN Bubbles as a Versatile Platform for Studies on Single‐Photon Emitters

open access: yesAdvanced Functional Materials, EarlyView.
Single‐photon emitters (SPEs) in hBN are promising for quantum technologies; however, in exfoliated samples their activation is required, limiting reproducibility of previous studies. This work introduces a large‐area MOVPE‐grown hBN platform that hosts SPEs without prior activation.
Piotr Tatarczak   +8 more
wiley   +1 more source

Exciton‐Polaritons in Nanoscale Metal‐Organic Frameworks: A Platform for the Reversible Modulation of Strong Light‐Matter Coupling via the Chemical Environment

open access: yesAdvanced Functional Materials, EarlyView.
Strong exciton‐photon coupling is achieved by integrating porphyrin ligand‐based MOF nanoparticles in optical cavities, as evidenced by pronounced polariton branch anticrossing. The porous nature of the resonator enables precise, reversible tuning via vapor pressure, unlocking unprecedented chemical‐environment controlled dynamic polaritonic platforms ...
Beatriz de Sola‐Báez   +7 more
wiley   +1 more source

Bio‐Inspired Molecular Events in Poly(Ionic Liquids)

open access: yesAdvanced Functional Materials, EarlyView.
Originating from dipolar and polar inter‐ and intra‐chain interactions of the building blocks, the topologies and morphologies of poly(ionic liquids) (PIL) govern their nano‐ and micro‐processibility. Modulating the interactions of cation‐anion pairs with aliphatic dipolar components enables the tunability of properties, facilitated by “bottom‐up ...
Jiahui Liu, Marek W. Urban
wiley   +1 more source

Mimicking Block Copolymer Self‐Assembly with One‐Pot Synthesized Polyphosphoester Gradient Copolymers

open access: yesAdvanced Functional Materials, EarlyView.
Degradable Polyphosphoester (PPE) gradient copolymers (GCPs) are synthesized via one‐pot copolymerization. We show that GCPs self‐assemble into nanostructures like polymersomes, effectively mimicking the behavior of traditional BCPs. The gradient strength is key, with softer gradients favoring micelles.
Suna Azhdari   +7 more
wiley   +1 more source

Sustainable Catalyst‐Free PLG Networks: Recyclability, Biodegradability, and Functional Performance

open access: yesAdvanced Functional Materials, EarlyView.
A catalyst‐additive free covalent adaptable network is developed from star‐shaped poly(lactide‐co‐glycolide) cross‐linked with pyromellitic dianhydride, enabling internal carboxylic acid‐driven transesterification. The resulting biodegradable network exhibits mechanical robustness (Young's modulus ≈1.6 GPa), complete recyclability, rapid biodegradation
Lars Schwarzer   +2 more
wiley   +1 more source

Home - About - Disclaimer - Privacy