Results 171 to 180 of about 5,091,650 (334)

A Smart Bio‐Battery Facilitates Diabetic Bone Defect Repair Via Inducing Macrophage Reprogramming and Synergistically Modulating Bone Remodeling Coupling

open access: yesAdvanced Functional Materials, EarlyView.
This research presents a novel implantable bio‐battery, GF‐OsG, tailored for diabetic bone repair. GF‐OsG generates microcurrents in high‐glucose conditions to enhance vascularization, shift macrophages to the M2 phenotype, and regulate immune responses.
Nanning Lv   +10 more
wiley   +1 more source

Multifunctional Microstructured Surfaces by Microcontact Printing of Reactive Microgels

open access: yesAdvanced Functional Materials, EarlyView.
Reactive poly(N‐vinylcaprolactam‐co‐glycidyl methacrylate) microgels are used as functional inks to create surface‐grafted arrays on glass via microcontact printing. The patterns (10–50 µm widths and spacings) enable stable binding and post‐functionalization with dyes and peptides.
Inga Litzen   +4 more
wiley   +1 more source

Two‐Dimensional Materials as a Multiproperty Sensing Platform

open access: yesAdvanced Functional Materials, EarlyView.
Various sensing modalities enabled and/or enhanced by two‐dimensional (2D) materials are reviewed. The domains considered for sensing include: 1) optoelectronics, 2) quantum defects, 3) scanning probe microscopy, 4) nanomechanics, and 5) bio‐ and chemosensing.
Dipankar Jana   +11 more
wiley   +1 more source

Schrodinger equations with magnetic fields and Hardy-Sobolev critical exponents

open access: yesElectronic Journal of Differential Equations, 2017
This article is motivated by problems in astrophysics. We consider nonlinear Schrodinger equations and related systems with magnetic fields and Hardy-Sobolev critical exponents. Under proper conditions, existence of ground state solutions to these
Zhenyu Guo   +2 more
doaj  

In Situ Study of Resistive Switching in a Nitride‐Based Memristive Device

open access: yesAdvanced Functional Materials, EarlyView.
In situ TEM biasing experiment demonstrates the volatile I‐V characteristic of MIM lamella device. In situ STEM‐EELS Ti L2/L3 ratio maps provide direct evidence of the oxygen vacancies migrations under positive/negative electrical bias, which is critical for revealing the RS mechanism for the MIM lamella device.
Di Zhang   +19 more
wiley   +1 more source

Grain Boundary Space Charge Engineering of Solid Oxide Electrolytes: Model Thin Film Study

open access: yesAdvanced Functional Materials, EarlyView.
This study demonstrates unprecedented control of grain boundary electrical properties in solid electrolytes. Selective diffusion of cations through grain boundaries in thin films enables 12 orders of magnitude variation in ionic resistance, proving that systematic chemical modification of grain boundary electrical properties is feasible.
Thomas Defferriere   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy