Results 111 to 120 of about 149 (149)

Advances in Radiative Heat Transfer: Bridging Far‐Field Fundamentals and Emerging Near‐Field Innovations

open access: yesAdvanced Functional Materials, EarlyView.
This review synthesizes the evolution of radiative heat transfer, emphasizing the transition from far‐field to near‐field regimes. Traditional frameworks, such as Planck's law, are revisited alongside modern innovations like fluctuational electrodynamics. Applications span nanoscale thermal management, energy harvesting, and thermophotovoltaic systems.
Ambali Alade Odebowale   +6 more
wiley   +1 more source

Active Thermal Field Integration for Marangoni‐Driven Salt Rejection and Water Collection

open access: yesAdvanced Functional Materials, EarlyView.
A thermal gradient fabric (TGF) evaporator with an auxiliary active thermal field can simultaneously increase evaporation rates and achieve long‐term salt rejection. The auxiliary active thermal field is well integrated with solar energy to construct moderate, extensive, and circulating Marangoni flow for salt rejection.
Can Ge   +12 more
wiley   +1 more source

Making Photoresponsive Metal–Organic Frameworks an Effective Class of Heterogeneous Photocatalyst

open access: yesAdvanced Functional Materials, EarlyView.
This review summarizes photoresponsive MOFs for photocatalytic applications, focusing on their capacity to enhance light harvesting, charge transfer, and surface reactions. While existing studies provide foundational insights, emerging characterization techniques enable a deeper understanding of photoresponsive MOFs.
Rui Liu   +3 more
wiley   +1 more source

Enhancing Optoelectronic Properties in Phthalocyanine‐Based SURMOFs: Synthesis of ABAB Linkers by Avoiding Statistical Condensation with Tailored Building Blocks

open access: yesAdvanced Functional Materials, EarlyView.
A novel phthalocyanine (PC)‐based metal–organic framework (MOFs) is synthesized using ditopic PC linkers obtained through regioselective statistical condensation. The resulting MOF exhibits significant improvements in electronic absorption, thereby enhancing the material's performance in light harvesting and energy conversion.
Lukas S. Langer   +12 more
wiley   +1 more source

Engineered Peptides‐Based Hybrid‐Nested Microneedle Effectively Treat Biofilm‐Infected Diabetic Wounds

open access: yesAdvanced Functional Materials, EarlyView.
A hybrid‐nested microneedle/cryogel scaffold (MQW‐CMg‐MOF) is designed for efficient biofilm removal and accelerated healing of diabetic wounds. The scaffold shows substantial biofilm removal in vitro and in a preclinical diabetic swine biofilm‐infected wound model compared to the control.
Syed Muntazir Andrabi   +11 more
wiley   +1 more source

Multi‐Scaled Cellulosic Nanonetworks from Tunicates

open access: yesAdvanced Functional Materials, EarlyView.
Microbial and plant nanonetworks of cellulose have enabled a wide range of high‐performance yet sustainable materials. Herein, a third class of cellulosic nanonetworks is showcased by exploiting the only animal tissue‐producing cellulose nanofibers, i.e., ascidians. An ultrastructure including spherical cells and a microvasculature with diameters of 50–
Mano Govindharaj   +10 more
wiley   +1 more source

Biofilm Control by Active Topography with Mucin Coating

open access: yesAdvanced Functional Materials, EarlyView.
This study reports a new antifouling strategy based on a bioinspired design. Mucin coating enhances biofilm control by active topography with beating micron‐sized pillars. Besides the mechanical force of beating pillars, the antibiofilm activities also involve biological factors since mucin coating inhibits swarming motility and c‐di‐GMP synthesis in ...
Zehui Han   +4 more
wiley   +1 more source

Distinctive Doping Behavior of Conjugated Polymers With Pendant‐Side Conjugation for Enhanced Thermoelectric Properties

open access: yesAdvanced Functional Materials, EarlyView.
Novel conjugated polymers with side‐chain π‐conjugation are developed to enhance organic thermoelectric properties. Remarkably, the pendant doping in the conjugated polymers preserved strong intermolecular ordering in the film states even at high FeCl3 dopant concentrations (16 – 32 mM), achieving a promising power factor > 10 µW m−1 K−2 across a wide ...
Hyeokjun Kim   +4 more
wiley   +1 more source

Minuscule Amounts of Pt Single Atoms Selectively Loaded on Minor (101) Facet of Anatase Crystallites Enables Outstanding Utilization Efficiency for Photocatalytic H2 Production

open access: yesAdvanced Functional Materials, EarlyView.
Ar–H2 annealing triggers redistribution of pre‐deposited Pt single atoms (SAs) on faceted anatase nanosheets, with selective SAs accumulation on the minor (101) facetsthus the co‐catalytic SA‐sites are positioned only where they are needed, i.e. at the electron exit facets.
Shanshan Qin   +6 more
wiley   +1 more source

Electricity Generation From Ambient Water Evaporation in the Absence of Sunlight via PVA‐Based Porous Hydrogels

open access: yesAdvanced Functional Materials, EarlyView.
In this article, a water‐evaporation driven energy harvester is devised that works even in the absence of sunlight. This is achieved by combining PVA hydrogel with thermoelectrics (TEG) to directly capture energy from water evaporation. Under mild conditions (RH 40%, T of 26 °C, and 2.8 m s−1 wind), 1.71 mW (1.02 W m−2) power can be generated, >3 fold ...
Zichen Gong, Ady Suwardi, Jing Cao
wiley   +1 more source

Home - About - Disclaimer - Privacy