Results 141 to 150 of about 83,750 (298)

Hyperoxia Induced Alteration of Chromatin Structure in Human Bone Marrow Derived Primary Mesenchymal Stromal Cells

open access: yesAdvanced Biology, EarlyView.
Chromatin, which organizes DNA, changes its structure to adapt to stress like high oxygen levels (hyperoxia), which can damage cells. Researchers developed a technique to observe these changes and found variability in how different parts of chromatin remodel.
Lauren Monroe   +4 more
wiley   +1 more source

β‐Catenin/c‐Myc Axis Modulates Autophagy Response to Different Ammonia Concentrations

open access: yesAdvanced Biology, Volume 9, Issue 3, March 2025.
Ammonia, detoxified by the liver into urea and glutamine, impacts autophagy differently at varying levels. Low ammonia activates autophagy via c‐Myc and β‐catenin, while high levels suppress it. Using Huh7 cells and Spf‐ash mice, c‐Myc's role in cytoprotective autophagy is revealed, offering insights into hyperammonemia and potential therapeutic ...
S. Sergio   +11 more
wiley   +1 more source

Forskolin Enhances Urokinase Plasminogen Activator Secretion and Angiogenic Activity of Xeno‐Free Cultures of Human Adipose Tissue‐Derived Stem Cells

open access: yesAdvanced Biology, EarlyView.
The regenerative potential of adipose tissue‐derived stem cells can be enhanced through chemical stimulation in vitro. A short stimulation protocol using forskolin, either alone or in combination with other growth factors, under xeno‐free conditions enhanced the pro‐angiogenic responses in human ASCs.
Maria Vittoria Giraudo   +5 more
wiley   +1 more source

Current and Future Cornea Chip Models for Advancing Ophthalmic Research and Therapeutics

open access: yesAdvanced Biology, EarlyView.
This review analyzes cornea chip technology as an innovative solution to corneal blindness and tissue scarcity. The examination encompasses recent developments in biomaterial design and fabrication methods replicating corneal architecture, highlighting applications in drug screening and disease modeling while addressing key challenges in mimicking ...
Minju Kim   +3 more
wiley   +1 more source

Activation of SIRT1 Reduces Renal Tubular Epithelial Cells Fibrosis in Hypoxia Through SIRT1‐FoxO1‐FoxO3‐Autophagy Pathway

open access: yesAdvanced Biology, EarlyView.
Hypoxia promotes the epithelial‐mesenchymal transition (EMT) of renal tubular epithelial cells via the SIRT1‐FoxO1‐FoxO3‐autophagy pathway, thereby resulting in the fibrosis of renal tubular epithelial cells. Activation of SIRT1 or induction of autophagy inhibits this process, alleviating hypoxia‐induced fibrosis.
Guangyu Wang   +6 more
wiley   +1 more source

Home - About - Disclaimer - Privacy